Efeitos agudos do exercício físico no desempenho cognitivo em jovens adultos. Um estudo transversal comparativo

Autores

  • Héctor Fuentes-Barría Universidad Arturo Prat. Iquique, Chile. https://orcid.org/0000-0003-0774-0848
  • Miguel Alarcón-Rivera Universidad Santo Tomás (Chile)
  • Raúl Aguilera-Eguía Universidad Católica de la Santísima Concepción (Chile).
  • Juan Maureira-Sánchez Universidad Bernardo O’Higgins (Chile).
  • Ángel Roco-Videla Universidad Autónoma de Chile

DOI:

https://doi.org/10.47197/retos.v72.117030

Palavras-chave:

Exercício, limiar anaeróbio, resistência física, adultos

Resumo

Introdução: O exercício físico pode afetar agudamente o desempenho cognitivo, especialmente as funções executivas, como a atenção seletiva e o controlo inibitório. No entanto, o impacto diferencial entre o exercício anaeróbico e aeróbico em adultos jovens é desconhecido. Objectivo: Comparar os efeitos imediatos de uma sessão de exercício anaeróbio (400 metros) e aeróbio (5000 metros) no desempenho cognitivo.

Métodos: Foi realizado um estudo transversal com 30 jovens adultos fisicamente ativos, alocados a um grupo anaeróbio ou aeróbio. Foram avaliadas variáveis ​​​​sociodemográficas, antropométricas e de frequência. O desempenho cognitivo foi medido com o Teste de Cores e Palavras de Stroop (SCWT) antes e após o exercício. A frequência cardíaca máxima foi registada durante a intervenção. Foram aplicados testes t e os tamanhos de efeito foram calculados.

Resultados: Não houve diferenças basais significativas entre os grupos. Após o exercício, ambos os grupos aumentaram significativamente a frequência cardíaca e os tempos de resposta no SCWT (p < 0,001). O grupo anaeróbio apresentou maiores aumentos nos tempos de reação e no défice cognitivo, com tamanhos de efeito mais elevados (d = 7,50 a 10,28), indicando um maior défice cognitivo. O grupo aeróbio apresentou aumentos mais moderados e menor comprometimento cognitivo (d = 0,58 a 4,47). A frequência cardíaca pós-exercício foi mais elevada no grupo aeróbio (p < 0,001; d = 1,96).

Conclusão: O exercício anaeróbio intenso provoca um défice cognitivo agudo mais acentuado do que o exercício aeróbio prolongado, apesar de uma menor carga cardiovascular sustentada. Estes resultados podem orientar o planeamento de programas de treino e reabilitação, considerando a função cognitiva pós-exercício.

Referências

Alves, M. D. D. J., Knechtle, B., Silva, D. D. S., Fernandes, M. S. D. S., Gomes, J. H., Thuany, M., Aidar, F. J., Weiss, K., & De Souza, R. F. (2023). Effects of High-Intensity Warm-Up on 5000-Meter Perfor-mance Time in Trained Long-Distance Runners. Journal of sports science & medicine, 22(2), 254–262. https://doi.org/10.52082/jssm.2023.254

Anzeneder, S., Zehnder, C., Schmid, J., Martin-Niedecken, A. L., Schmidt, M., & Benzing, V. (2023). Dose-response relation between the duration of a cognitively challenging bout of physical exercise and children's cognition. Scandinavian journal of medicine & science in sports, 33(8), 1439–1451. https://doi.org/10.1111/sms.14370

Balboa-Castillo, T., Muñoz, S., Seron, P., Andrade-Mayorga, O., Lavados-Romo, P., Aguilar-Farias, N. (2023) Validity and reliability of the international physical activity questionnaire short form in Chilean adults. PLoS ONE, 18(10):e0291604. https://doi.org/10.1371/jour-nal.pone.0291604

Basso, J. C., & Suzuki, W. A. (2017). The Effects of Acute Exercise on Mood, Cognition, Neurophysiolo-gy, and Neurochemical Pathways: A Review. Brain plasticity (Amsterdam, Netherlands), 2(2), 127–152. https://doi.org/10.3233/BPL-160040

Bellenger, C. R., Thomson, R. L., Davison, K., Robertson, E. Y., Nelson, M. J., Karavirta, L., & Buckley, J. D. (2018). Optimization of Maximal Rate of Heart Rate Increase Assessment in Runners. Re-search quarterly for exercise and sport, 89(3), 322–331. https://doi.org/10.1080/02701367.2018.1475722

Boa Sorte Silva, N. C., Barha, C. K., Erickson, K. I., Kramer, A. F., & Liu-Ambrose, T. (2024). Physical exercise, cognition, and brain health in aging. Trends in neurosciences, 47(6), 402–417. https://doi.org/10.1016/j.tins.2024.04.004

Cai, Z., Shi, L., Wu, W., Meng, L., Ru, Y., & Wu, M. (2025). A scoping review of effects of acute exercise on executive function: evidence from event-related potentials. Frontiers in psychology, 16, 1599861. https://doi.org/10.3389/fpsyg.2025.1599861

Cantelon, J. A., & Giles, G. E. (2021). A Review of Cognitive Changes During Acute Aerobic Exercise. Frontiers in psychology, 12, 653158. https://doi.org/10.3389/fpsyg.2021.653158

Chang, C. L., Lin, T. K., Pan, C. Y., Wang, T. C., Tseng, Y. T., Chien, C. Y., & Tsai, C. L. (2024). Distinct ef-fects of long-term Tai Chi Chuan and aerobic exercise interventions on motor and neurocogni-tive per-formance in early-stage Parkinson's disease: a randomized controlled trial. European journal of physical and rehabilitation medicine, 60(4), 621–633. https://doi.org/10.23736/S1973-9087.24.08166-8

Chen, C., & Nakagawa, S. (2023). Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing research reviews, 86, 101868. https://doi.org/10.1016/j.arr.2023.101868

Claassen, J. A. H. R., Thijssen, D. H. J., Panerai, R. B., & Faraci, F. M. (2021). Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiological reviews, 101(4), 1487–1559. https://doi.org/10.1152/physrev.00022.2020

Córdova, C., Silva, V. C., Moraes, C. F., Simões, H. G., & Nóbrega, O. T. (2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian journal of medical and biological research, 42(5), 458–464. https://doi.org/10.1590/s0100-879x2009000500010

Cuschieri S. (2019). The STROBE guidelines. Saudi journal of anaesthesia, 13(Suppl 1), S31–S34. https://doi.org/10.4103/sja.SJA_543_18

Davies K. J. A. (2018). Cardiovascular Adaptive Homeostasis in Exercise. Frontiers in physiology, 9, 369. https://doi.org/10.3389/fphys.2018.00369

Duffield, R., Dawson, B., & Goodman, C. (2005). Energy system contribution to 400-metre and 800-metre track running. Journal of sports sciences, 23(3), 299–307. https://doi.org/10.1080/02640410410001730043

Erwin, H., & Schreiber, S. (2024). Aerobic and Anaerobic Exercise's Impact on Cognitive Functions in Eighth Grade Students. International journal of environmental research and public health, 21(7), 833. https://doi.org/10.3390/ijerph21070833

Fuentes-Barría, H., Aguilera-Eguía, R., Maureira-Sánchez, J., Alarcón-Rivera, M., Garrido-Osorio, V., López-Soto, O. P., Aristizábal-Hoyos, J. A., Angarita-Dávila, L., Rojas-Gómez, D., Bermudez, V., Flores-Fernández, C., Roco-Videla, Á., González-Casanova, J. E., Urbano-Cerda, S., & Iulian Alexe, D. (2025). Effects of 12 Weeks of Interval Block Resistance Training Versus Circuit Re-sistance Training on Body Composition, Performance, and Autonomic Recovery in Adults: Ran-domized Controlled Trial. Journal of Functional Morphology and Kinesiology, 10(2), 195. https://doi.org/10.3390/jfmk10020195

Han, H., Zhao, Y., Du, J., Wang, S., Yang, X., Li, W., Song, J., Zhang, S., Zhang, Z., Tan, Y., Hatch, G. M., Zhang, M., & Chen, L. (2023). Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immunity & ageing: I & A, 20(1), 63. https://doi.org/10.1186/s12979-023-00390-4

He, M., Guo, J., Yu, S., Lian, H., Zhan, R., Luo, R., Shi, Z., Zhuang, Z., & Cai, W. (2025). The effects of aero-bic exercise on goal-directed attention and inhibitory control in individuals with high trait anx-iety: an EEG study. BMC psychology, 13(1), 86. https://doi.org/10.1186/s40359-025-02376-x

Huang, T. Y., Chen, F. T., Li, R. H., Hillman, C. H., Cline, T. L., Chu, C. H., Hung, T. M., & Chang, Y. K. (2022). Effects of Acute Resistance Exercise on Executive Function: A Systematic Review of the Moderating Role of Intensity and Executive Function Domain. Sports medicine open, 8(1), 141. https://doi.org/10.1186/s40798-022-00527-7

Labraña, A. M., Durán, E., Martínez, M. A., Leiva, A. M., Garrido-Méndez, A., Díaz, X., Salas, C., & Celis-Morales, C. (2017). Menor peso corporal, de índice de masa corporal y de perímetro de cintura se asocian a una disminución en factores de riesgo cardiovascular en población chilena. Revista médica de Chile, 145(5), 585–594. https://doi.org/10.4067/S0034-98872017000500005

Kao, S. C., Baumgartner, N., Noh, K., Wang, C. H., & Schmitt, S. (2023). Acute effects of intense interval versus aerobic exercise on children's behavioral and neuroelectric measures of inhibitory con-trol. Journal of science and medicine in sport, 26(6), 316–321. https://doi.org/10.1016/j.jsams.2023.05.003

Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335–1345. https://doi.org/10.1111/psyp.12889

Kao, S. C., Baumgartner, N., Nagy, C., Fu, H. L., Yang, C. T., & Wang, C. H. (2022). Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying in-hibitory control processes: An ERP and SFT study. Psychophysiology, 59(8), e14032. https://doi.org/10.1111/psyp.14032

Ktaiche, M., Fares, Y., & Abou-Abbas, L. (2022). Stroop color and word test (SCWT): Normative data for the Lebanese adult population. Applied neuropsychology. Adult, 29(6), 1578–1586. https://doi.org/10.1080/23279095.2021.1901101

Kim, M. K., Koh, S. H., & Kim, T. K. (2025). Effects of Walking and Barre Exercise on CES-D, Stress Hor-mones, hs-CRP, and Immunoglobulins in Elderly Women. Journal of clinical medicine, 14(5), 1777. https://doi.org/10.3390/jcm14051777

Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611–1626. https://doi.org/10.1111/psyp.12736

Makaruk, H., Starzak, M., Płaszewski, M., & Winchester, J. B. (2022). Internal Validity in Resistance Training Research: A Systematic Review. Journal of sports science & medicine, 21(2), 308–331. https://doi.org/10.52082/jssm.2022.308

Miranda, H., Maia, M. F., Paz, G. A., de Souza, J. A. A. A., Simão, R., Farias, D. A., & Willardson, J. M. (2018). Repetition Performance and Blood Lactate Responses Adopting Different Recovery Pe-riods Be-tween Training Sessions in Trained Men. Journal of strength and conditioning re-search, 32(12), 3340–3347. https://doi.org/10.1519/JSC.0000000000001840

Moreau, D., & Chou, E. (2019). The Acute Effect of High-Intensity Exercise on Executive Function: A Me-ta-Analysis. Perspectives on psychological science: a journal of the Association for Psycho-logical Science, 14(5), 734–764. https://doi.org/10.1177/1745691619850568

Notarius, C. F., & Floras, J. S. (2021). Sympathetic neural responses in heart failure during exercise and after exercise training. Clinical science (London, England: 1979), 135(4), 651–669. https://doi.org/10.1042/CS20201306

Nuuttila, O. P., Korhonen, E., Laukkanen, J., & Kyröläinen, H. (2021). Validity of the Wrist-Worn Polar Vantage V2 to Measure Heart Rate and Heart Rate Variability at Rest. Sensors (Basel, Switzer-land), 22(1), 137. https://doi.org/10.3390/s22010137

Oliveira, A., Fidalgo, A., Farinatti, P., & Monteiro, W. (2024). Effects of high-intensity interval and con-tinuous moderate aerobic training on fitness and health markers of older adults: A systematic re-view and meta-analysis. Archives of gerontology and geriatrics, 124, 105451. https://doi.org/10.1016/j.archger.2024.105451

Pastor, D., Ballester-Ferrer, J. A., Carbonell-Hernández, L., Baladzhaeva, S., & Cervello, E. (2022). Phys-ical Exercise and Cognitive Function. International journal of environmental research and pub-lic health, 19(15), 9564. https://doi.org/10.3390/ijerph19159564

Periáñez, J. A., Lubrini, G., García-Gutiérrez, A., & Ríos-Lago, M. (2021). Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cogni-tive Flexibility, and Conflict Monitoring. Archives of clinical neuropsychology: the official jour-nal of the National Academy of Neuropsychologists, 36(1), 99–111. https://doi.org/10.1093/arclin/acaa034

Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of physiology, 599(3), 737–767. https://doi.org/10.1113/JP279963

Qiu, Y., Fernández-García, B., Lehmann, H. I., Li, G., Kroemer, G., López-Otín, C., & Xiao, J. (2023). Exer-cise sustains the hallmarks of health. Journal of sport and health science, 12(1), 8–35. https://doi.org/10.1016/j.jshs.2022.10.003

Ren, F. F., Hillman, C. H., Wang, W. G., Li, R. H., Zhou, W. S., Liang, W. M., Yang, Y., Chen, F. T., & Chang, Y. K. (2024). Effects of aerobic exercise on cognitive function in adults with major depressive disorder: A systematic review and meta-analysis. International journal of clinical and health psychology: IJCHP, 24(2), 100447. https://doi.org/10.1016/j.ijchp.2024.100447

Sanders, L. M. J., Hortobágyi, T., Karssemeijer, E. G. A., Van der Zee, E. A., Scherder, E. J. A., & van Heuvelen, M. J. G. (2020). Effects of low- and high-intensity physical exercise on physical and cognitive function in older persons with dementia: a randomized controlled trial. Alzheimer's research & therapy, 12(1), 28. https://doi.org/10.1186/s13195-020-00597-3

Shirzad, M., Tari, B., Dalton, C., Van Riesen, J., Marsala, M. J., & Heath, M. (2022). Passive exercise in-creases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology, 59(12), e14132. https://doi.org/10.1111/psyp.14132

Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremen-tal Exercise in Recreational Men and Women. Sensors (Basel, Switzerland), 22(17), 6536 https://dx.doi.org/10.3390/s22176536

Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia medica, 31(1), 010502. https://doi.org/10.11613/BM.2021.010502

Silva, V. S. da, & Vieira, M. F. S. (2020). International Society for the Advancement of Kinanthropome-try (ISAK) Global: international accreditation scheme of the competent anthropometrist. Revis-ta Brasileira de Cineantropometria & Desempenho Humano, 22, e70517. https://doi.org/10.1590/1980-0037.2020v22e70517

Skalenius, M., Mattsson, C. M., Dahlberg, P., Bergfeldt, L., & Ravn-Fischer, A. (2019). Performance and cardiac evaluation before and after a 3-week training camp for 400-meter sprinters - An ob-servational, non-randomized study. PloS one, 14(5), e0217856. https://doi.org/10.1371/journal.pone.0217856

Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Brown-dyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic medicine, 72(3), 239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

Sudo, M., Costello, J. T., McMorris, T., & Ando, S. (2022). The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Frontiers in behavioral neu-roscience, 16, 957677. https://doi.org/10.3389/fnbeh.2022.957677

Tarumi, T., Patel, N. R., Tomoto, T., Pasha, E., Khan, A. M., Kostroske, K., Riley, J., Tinajero, C. D., Wang, C., Hynan, L. S., Rodrigue, K. M., Kennedy, K. M., Park, D. C., & Zhang, R. (2022). Aerobic exer-cise training and neurocognitive function in cognitively normal older adults: A one-year ran-domized controlled trial. Journal of internal medicine, 292(5), 788–803. https://doi.org/10.1111/joim.13534

ter Avest, E., Patist, F. M., Ter Maaten, J. C., & Nijsten, M. W. (2011). Elevated lactate during psychogen-ic hyperventilation. Emergency medicine journal: EMJ, 28(4), 269–273. https://doi.org/10.1136/emj.2009.084103

Tsukamoto, H., Takenaka, S., Suga, T., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2017). Impact of Exercise Intensity and Duration on Postexercise Executive Function. Medi-cine and science in sports and exercise, 49(4), 774–784. https://doi.org/10.1249/MSS.0000000000001155

Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports medicine (Auckland, N.Z.), 47(8), 1569–1588. https://doi.org/10.1007/s40279-016-0672-0

van Praag, H., Fleshner, M., Schwartz, M. W., & Mattson, M. P. (2014). Exercise, energy intake, glucose homeostasis, and the brain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(46), 15139–15149. https://doi.org/10.1523/JNEUROSCI.2814-14.2014

Wang, M. C., & Yang, Y. (2021). Complexity and bias in cross-sectional data with binary disease out-come in observational studies. Statistics in medicine, 40(4), 950–962. https://doi.org/10.1002/sim.8812

Wang, P., Meng, Y., Tong, J., & Jiang, T. (2025). Effects of exercise intervention on executive function in children with overweight and obesity: a systematic review and meta-analysis. PeerJ, 13, e19273. https://doi.org/10.7717/peerj.19273

Wassenaar, T. M., Wheatley, C. M., Beale, N., Nichols, T., Salvan, P., Meaney, A., Atherton, K., Diaz-Ordaz, K., Dawes, H., & Johansen-Berg, H. (2021). The effect of a one-year vigorous physical ac-tivity intervention on fitness, cognitive performance and mental health in young adolescents: the Fit to Study cluster randomised controlled trial. The international journal of behavioral nu-trition and physical activity, 18(1), 47. https://doi.org/10.1186/s12966-021-01113-y

Weir, C. B., & Jan, A. (2023). BMI Classification Percentile and Cut Off Points. In StatPearls. StatPearls Publishing.

Wohlwend, M., Olsen, A., Håberg, A. K., & Palmer, H. S. (2017). Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults. Frontiers in psychology, 8, 406. https://doi.org/10.3389/fpsyg.2017.00406

World Medical Association (2025). World Medical Association Declaration of Helsinki: Ethical Princi-ples for Medical Research Involving Human Participants. Journal of the American Medical As-sociation, 333(1), 71–74. https://doi.org/10.1001/jama.2024.21972

Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute mod-erate exercise elicits increased dorsolateral prefrontal activation and improves cognitive per-formance with Stroop test. NeuroImage, 50(4), 1702–1710. https://doi.org/10.1016/j.neuroimage.2009.12.023

Yang, Z., Zhu, L., He, Q., Li, X., Zhang, J., & Tang, Y. (2025). The relationship between acute aerobic ex-ercise and inhibitory control in college students: The impact of physical and cognitive engage-ment. Physiology & behavior, 290, 114779. https://doi.org/10.1016/j.physbeh.2024.114779

Zhang, M., Jia, J., Yang, Y., Zhang, L., & Wang, X. (2023). Effects of exercise interventions on cognitive functions in healthy populations: A systematic review and meta-analysis. Ageing research re-views, 92, 102116. https://doi.org/10.1016/j.arr.2023.102116

Zhang, R., & Li, H. (2025). Effect of vigorous-intensity exercise on the working memory and inhibitory control among children with attention deficit hyperactivity disorder: a systematic review and meta-analysis. Italian journal of pediatrics, 51(1), 104. https://doi.org/10.1186/s13052-025-01924-w

Publicado

16-09-2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Fuentes-Barría, H., Alarcón-Rivera, M., Aguilera-Eguía, R., Maureira-Sánchez, J., & Roco-Videla, Ángel. (2025). Efeitos agudos do exercício físico no desempenho cognitivo em jovens adultos. Um estudo transversal comparativo. Retos, 72, 664-677. https://doi.org/10.47197/retos.v72.117030