Acute effects of physical exercise on cognitive performance in young adults. Comparative cross-sectional study
DOI:
https://doi.org/10.47197/retos.v72.117030Keywords:
Exercise, Anaerobic Threshold, Physical Endurance, Cognition, AdultsAbstract
Background: Physical exercise can acutely affect cognitive performance, especially executive functions such as selective attention and inhibitory control. However, the differential impact of anaerobic versus aerobic exercise in young adults remains unclear.
Objective: To compare the immediate effects of an anaerobic exercise session (400 meters) and an aerobic exercise session (5000 meters) on cognitive performance.
Methods: A cross-sectional study was conducted with 30 physically active young adults assigned to either an anaerobic or aerobic group. Socio-demographic, anthropo-metric variables and heart rate were assessed. Cognitive performance was measured using the Stroop Color and Word Test (SCWT) before and after exercise. The maximum heart rate was recorded during the intervention. T-tests were applied and effect sizes calculated.
Results: No significant baseline differences were found between groups. After exercise, both groups showed significant increases in heart rate and SCWT response times (p < 0.001). The anaerobic group showed greater increases in reaction times and cognitive interference with large effect sizes (d = 7.50 to 10.28), indicating greater cognitive impairment. The aerobic group exhibited more moderate increases and less cognitive impact (d = 0.58 to 4.47). Post-exercise heart rate was higher in the aerobic group (p < 0.001; d = 1.96).
Conclusion: Intense anaerobic exercise causes a more pronounced acute cognitive decline than pro-longed aerobic exercise, despite a lower sustained cardiovascular load. These findings may guide the design of training and rehabilitation programs considering post-exercise cognitive function.
References
Alves, M. D. D. J., Knechtle, B., Silva, D. D. S., Fernandes, M. S. D. S., Gomes, J. H., Thuany, M., Aidar, F. J., Weiss, K., & De Souza, R. F. (2023). Effects of High-Intensity Warm-Up on 5000-Meter Perfor-mance Time in Trained Long-Distance Runners. Journal of sports science & medicine, 22(2), 254–262. https://doi.org/10.52082/jssm.2023.254
Anzeneder, S., Zehnder, C., Schmid, J., Martin-Niedecken, A. L., Schmidt, M., & Benzing, V. (2023). Dose-response relation between the duration of a cognitively challenging bout of physical exercise and children's cognition. Scandinavian journal of medicine & science in sports, 33(8), 1439–1451. https://doi.org/10.1111/sms.14370
Balboa-Castillo, T., Muñoz, S., Seron, P., Andrade-Mayorga, O., Lavados-Romo, P., Aguilar-Farias, N. (2023) Validity and reliability of the international physical activity questionnaire short form in Chilean adults. PLoS ONE, 18(10):e0291604. https://doi.org/10.1371/jour-nal.pone.0291604
Basso, J. C., & Suzuki, W. A. (2017). The Effects of Acute Exercise on Mood, Cognition, Neurophysiolo-gy, and Neurochemical Pathways: A Review. Brain plasticity (Amsterdam, Netherlands), 2(2), 127–152. https://doi.org/10.3233/BPL-160040
Bellenger, C. R., Thomson, R. L., Davison, K., Robertson, E. Y., Nelson, M. J., Karavirta, L., & Buckley, J. D. (2018). Optimization of Maximal Rate of Heart Rate Increase Assessment in Runners. Re-search quarterly for exercise and sport, 89(3), 322–331. https://doi.org/10.1080/02701367.2018.1475722
Boa Sorte Silva, N. C., Barha, C. K., Erickson, K. I., Kramer, A. F., & Liu-Ambrose, T. (2024). Physical exercise, cognition, and brain health in aging. Trends in neurosciences, 47(6), 402–417. https://doi.org/10.1016/j.tins.2024.04.004
Cai, Z., Shi, L., Wu, W., Meng, L., Ru, Y., & Wu, M. (2025). A scoping review of effects of acute exercise on executive function: evidence from event-related potentials. Frontiers in psychology, 16, 1599861. https://doi.org/10.3389/fpsyg.2025.1599861
Cantelon, J. A., & Giles, G. E. (2021). A Review of Cognitive Changes During Acute Aerobic Exercise. Frontiers in psychology, 12, 653158. https://doi.org/10.3389/fpsyg.2021.653158
Chang, C. L., Lin, T. K., Pan, C. Y., Wang, T. C., Tseng, Y. T., Chien, C. Y., & Tsai, C. L. (2024). Distinct ef-fects of long-term Tai Chi Chuan and aerobic exercise interventions on motor and neurocogni-tive per-formance in early-stage Parkinson's disease: a randomized controlled trial. European journal of physical and rehabilitation medicine, 60(4), 621–633. https://doi.org/10.23736/S1973-9087.24.08166-8
Chen, C., & Nakagawa, S. (2023). Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing research reviews, 86, 101868. https://doi.org/10.1016/j.arr.2023.101868
Claassen, J. A. H. R., Thijssen, D. H. J., Panerai, R. B., & Faraci, F. M. (2021). Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiological reviews, 101(4), 1487–1559. https://doi.org/10.1152/physrev.00022.2020
Córdova, C., Silva, V. C., Moraes, C. F., Simões, H. G., & Nóbrega, O. T. (2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian journal of medical and biological research, 42(5), 458–464. https://doi.org/10.1590/s0100-879x2009000500010
Cuschieri S. (2019). The STROBE guidelines. Saudi journal of anaesthesia, 13(Suppl 1), S31–S34. https://doi.org/10.4103/sja.SJA_543_18
Davies K. J. A. (2018). Cardiovascular Adaptive Homeostasis in Exercise. Frontiers in physiology, 9, 369. https://doi.org/10.3389/fphys.2018.00369
Duffield, R., Dawson, B., & Goodman, C. (2005). Energy system contribution to 400-metre and 800-metre track running. Journal of sports sciences, 23(3), 299–307. https://doi.org/10.1080/02640410410001730043
Erwin, H., & Schreiber, S. (2024). Aerobic and Anaerobic Exercise's Impact on Cognitive Functions in Eighth Grade Students. International journal of environmental research and public health, 21(7), 833. https://doi.org/10.3390/ijerph21070833
Fuentes-Barría, H., Aguilera-Eguía, R., Maureira-Sánchez, J., Alarcón-Rivera, M., Garrido-Osorio, V., López-Soto, O. P., Aristizábal-Hoyos, J. A., Angarita-Dávila, L., Rojas-Gómez, D., Bermudez, V., Flores-Fernández, C., Roco-Videla, Á., González-Casanova, J. E., Urbano-Cerda, S., & Iulian Alexe, D. (2025). Effects of 12 Weeks of Interval Block Resistance Training Versus Circuit Re-sistance Training on Body Composition, Performance, and Autonomic Recovery in Adults: Ran-domized Controlled Trial. Journal of Functional Morphology and Kinesiology, 10(2), 195. https://doi.org/10.3390/jfmk10020195
Han, H., Zhao, Y., Du, J., Wang, S., Yang, X., Li, W., Song, J., Zhang, S., Zhang, Z., Tan, Y., Hatch, G. M., Zhang, M., & Chen, L. (2023). Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immunity & ageing: I & A, 20(1), 63. https://doi.org/10.1186/s12979-023-00390-4
He, M., Guo, J., Yu, S., Lian, H., Zhan, R., Luo, R., Shi, Z., Zhuang, Z., & Cai, W. (2025). The effects of aero-bic exercise on goal-directed attention and inhibitory control in individuals with high trait anx-iety: an EEG study. BMC psychology, 13(1), 86. https://doi.org/10.1186/s40359-025-02376-x
Huang, T. Y., Chen, F. T., Li, R. H., Hillman, C. H., Cline, T. L., Chu, C. H., Hung, T. M., & Chang, Y. K. (2022). Effects of Acute Resistance Exercise on Executive Function: A Systematic Review of the Moderating Role of Intensity and Executive Function Domain. Sports medicine open, 8(1), 141. https://doi.org/10.1186/s40798-022-00527-7
Labraña, A. M., Durán, E., Martínez, M. A., Leiva, A. M., Garrido-Méndez, A., Díaz, X., Salas, C., & Celis-Morales, C. (2017). Menor peso corporal, de índice de masa corporal y de perímetro de cintura se asocian a una disminución en factores de riesgo cardiovascular en población chilena. Revista médica de Chile, 145(5), 585–594. https://doi.org/10.4067/S0034-98872017000500005
Kao, S. C., Baumgartner, N., Noh, K., Wang, C. H., & Schmitt, S. (2023). Acute effects of intense interval versus aerobic exercise on children's behavioral and neuroelectric measures of inhibitory con-trol. Journal of science and medicine in sport, 26(6), 316–321. https://doi.org/10.1016/j.jsams.2023.05.003
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335–1345. https://doi.org/10.1111/psyp.12889
Kao, S. C., Baumgartner, N., Nagy, C., Fu, H. L., Yang, C. T., & Wang, C. H. (2022). Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying in-hibitory control processes: An ERP and SFT study. Psychophysiology, 59(8), e14032. https://doi.org/10.1111/psyp.14032
Ktaiche, M., Fares, Y., & Abou-Abbas, L. (2022). Stroop color and word test (SCWT): Normative data for the Lebanese adult population. Applied neuropsychology. Adult, 29(6), 1578–1586. https://doi.org/10.1080/23279095.2021.1901101
Kim, M. K., Koh, S. H., & Kim, T. K. (2025). Effects of Walking and Barre Exercise on CES-D, Stress Hor-mones, hs-CRP, and Immunoglobulins in Elderly Women. Journal of clinical medicine, 14(5), 1777. https://doi.org/10.3390/jcm14051777
Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611–1626. https://doi.org/10.1111/psyp.12736
Makaruk, H., Starzak, M., Płaszewski, M., & Winchester, J. B. (2022). Internal Validity in Resistance Training Research: A Systematic Review. Journal of sports science & medicine, 21(2), 308–331. https://doi.org/10.52082/jssm.2022.308
Miranda, H., Maia, M. F., Paz, G. A., de Souza, J. A. A. A., Simão, R., Farias, D. A., & Willardson, J. M. (2018). Repetition Performance and Blood Lactate Responses Adopting Different Recovery Pe-riods Be-tween Training Sessions in Trained Men. Journal of strength and conditioning re-search, 32(12), 3340–3347. https://doi.org/10.1519/JSC.0000000000001840
Moreau, D., & Chou, E. (2019). The Acute Effect of High-Intensity Exercise on Executive Function: A Me-ta-Analysis. Perspectives on psychological science: a journal of the Association for Psycho-logical Science, 14(5), 734–764. https://doi.org/10.1177/1745691619850568
Notarius, C. F., & Floras, J. S. (2021). Sympathetic neural responses in heart failure during exercise and after exercise training. Clinical science (London, England: 1979), 135(4), 651–669. https://doi.org/10.1042/CS20201306
Nuuttila, O. P., Korhonen, E., Laukkanen, J., & Kyröläinen, H. (2021). Validity of the Wrist-Worn Polar Vantage V2 to Measure Heart Rate and Heart Rate Variability at Rest. Sensors (Basel, Switzer-land), 22(1), 137. https://doi.org/10.3390/s22010137
Oliveira, A., Fidalgo, A., Farinatti, P., & Monteiro, W. (2024). Effects of high-intensity interval and con-tinuous moderate aerobic training on fitness and health markers of older adults: A systematic re-view and meta-analysis. Archives of gerontology and geriatrics, 124, 105451. https://doi.org/10.1016/j.archger.2024.105451
Pastor, D., Ballester-Ferrer, J. A., Carbonell-Hernández, L., Baladzhaeva, S., & Cervello, E. (2022). Phys-ical Exercise and Cognitive Function. International journal of environmental research and pub-lic health, 19(15), 9564. https://doi.org/10.3390/ijerph19159564
Periáñez, J. A., Lubrini, G., García-Gutiérrez, A., & Ríos-Lago, M. (2021). Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cogni-tive Flexibility, and Conflict Monitoring. Archives of clinical neuropsychology: the official jour-nal of the National Academy of Neuropsychologists, 36(1), 99–111. https://doi.org/10.1093/arclin/acaa034
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of physiology, 599(3), 737–767. https://doi.org/10.1113/JP279963
Qiu, Y., Fernández-García, B., Lehmann, H. I., Li, G., Kroemer, G., López-Otín, C., & Xiao, J. (2023). Exer-cise sustains the hallmarks of health. Journal of sport and health science, 12(1), 8–35. https://doi.org/10.1016/j.jshs.2022.10.003
Ren, F. F., Hillman, C. H., Wang, W. G., Li, R. H., Zhou, W. S., Liang, W. M., Yang, Y., Chen, F. T., & Chang, Y. K. (2024). Effects of aerobic exercise on cognitive function in adults with major depressive disorder: A systematic review and meta-analysis. International journal of clinical and health psychology: IJCHP, 24(2), 100447. https://doi.org/10.1016/j.ijchp.2024.100447
Sanders, L. M. J., Hortobágyi, T., Karssemeijer, E. G. A., Van der Zee, E. A., Scherder, E. J. A., & van Heuvelen, M. J. G. (2020). Effects of low- and high-intensity physical exercise on physical and cognitive function in older persons with dementia: a randomized controlled trial. Alzheimer's research & therapy, 12(1), 28. https://doi.org/10.1186/s13195-020-00597-3
Shirzad, M., Tari, B., Dalton, C., Van Riesen, J., Marsala, M. J., & Heath, M. (2022). Passive exercise in-creases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology, 59(12), e14132. https://doi.org/10.1111/psyp.14132
Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremen-tal Exercise in Recreational Men and Women. Sensors (Basel, Switzerland), 22(17), 6536 https://dx.doi.org/10.3390/s22176536
Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia medica, 31(1), 010502. https://doi.org/10.11613/BM.2021.010502
Silva, V. S. da, & Vieira, M. F. S. (2020). International Society for the Advancement of Kinanthropome-try (ISAK) Global: international accreditation scheme of the competent anthropometrist. Revis-ta Brasileira de Cineantropometria & Desempenho Humano, 22, e70517. https://doi.org/10.1590/1980-0037.2020v22e70517
Skalenius, M., Mattsson, C. M., Dahlberg, P., Bergfeldt, L., & Ravn-Fischer, A. (2019). Performance and cardiac evaluation before and after a 3-week training camp for 400-meter sprinters - An ob-servational, non-randomized study. PloS one, 14(5), e0217856. https://doi.org/10.1371/journal.pone.0217856
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Brown-dyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic medicine, 72(3), 239–252. https://doi.org/10.1097/PSY.0b013e3181d14633
Sudo, M., Costello, J. T., McMorris, T., & Ando, S. (2022). The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Frontiers in behavioral neu-roscience, 16, 957677. https://doi.org/10.3389/fnbeh.2022.957677
Tarumi, T., Patel, N. R., Tomoto, T., Pasha, E., Khan, A. M., Kostroske, K., Riley, J., Tinajero, C. D., Wang, C., Hynan, L. S., Rodrigue, K. M., Kennedy, K. M., Park, D. C., & Zhang, R. (2022). Aerobic exer-cise training and neurocognitive function in cognitively normal older adults: A one-year ran-domized controlled trial. Journal of internal medicine, 292(5), 788–803. https://doi.org/10.1111/joim.13534
ter Avest, E., Patist, F. M., Ter Maaten, J. C., & Nijsten, M. W. (2011). Elevated lactate during psychogen-ic hyperventilation. Emergency medicine journal: EMJ, 28(4), 269–273. https://doi.org/10.1136/emj.2009.084103
Tsukamoto, H., Takenaka, S., Suga, T., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2017). Impact of Exercise Intensity and Duration on Postexercise Executive Function. Medi-cine and science in sports and exercise, 49(4), 774–784. https://doi.org/10.1249/MSS.0000000000001155
Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports medicine (Auckland, N.Z.), 47(8), 1569–1588. https://doi.org/10.1007/s40279-016-0672-0
van Praag, H., Fleshner, M., Schwartz, M. W., & Mattson, M. P. (2014). Exercise, energy intake, glucose homeostasis, and the brain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(46), 15139–15149. https://doi.org/10.1523/JNEUROSCI.2814-14.2014
Wang, M. C., & Yang, Y. (2021). Complexity and bias in cross-sectional data with binary disease out-come in observational studies. Statistics in medicine, 40(4), 950–962. https://doi.org/10.1002/sim.8812
Wang, P., Meng, Y., Tong, J., & Jiang, T. (2025). Effects of exercise intervention on executive function in children with overweight and obesity: a systematic review and meta-analysis. PeerJ, 13, e19273. https://doi.org/10.7717/peerj.19273
Wassenaar, T. M., Wheatley, C. M., Beale, N., Nichols, T., Salvan, P., Meaney, A., Atherton, K., Diaz-Ordaz, K., Dawes, H., & Johansen-Berg, H. (2021). The effect of a one-year vigorous physical ac-tivity intervention on fitness, cognitive performance and mental health in young adolescents: the Fit to Study cluster randomised controlled trial. The international journal of behavioral nu-trition and physical activity, 18(1), 47. https://doi.org/10.1186/s12966-021-01113-y
Weir, C. B., & Jan, A. (2023). BMI Classification Percentile and Cut Off Points. In StatPearls. StatPearls Publishing.
Wohlwend, M., Olsen, A., Håberg, A. K., & Palmer, H. S. (2017). Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults. Frontiers in psychology, 8, 406. https://doi.org/10.3389/fpsyg.2017.00406
World Medical Association (2025). World Medical Association Declaration of Helsinki: Ethical Princi-ples for Medical Research Involving Human Participants. Journal of the American Medical As-sociation, 333(1), 71–74. https://doi.org/10.1001/jama.2024.21972
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute mod-erate exercise elicits increased dorsolateral prefrontal activation and improves cognitive per-formance with Stroop test. NeuroImage, 50(4), 1702–1710. https://doi.org/10.1016/j.neuroimage.2009.12.023
Yang, Z., Zhu, L., He, Q., Li, X., Zhang, J., & Tang, Y. (2025). The relationship between acute aerobic ex-ercise and inhibitory control in college students: The impact of physical and cognitive engage-ment. Physiology & behavior, 290, 114779. https://doi.org/10.1016/j.physbeh.2024.114779
Zhang, M., Jia, J., Yang, Y., Zhang, L., & Wang, X. (2023). Effects of exercise interventions on cognitive functions in healthy populations: A systematic review and meta-analysis. Ageing research re-views, 92, 102116. https://doi.org/10.1016/j.arr.2023.102116
Zhang, R., & Li, H. (2025). Effect of vigorous-intensity exercise on the working memory and inhibitory control among children with attention deficit hyperactivity disorder: a systematic review and meta-analysis. Italian journal of pediatrics, 51(1), 104. https://doi.org/10.1186/s13052-025-01924-w
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Héctor Fuentes-Barría, Miguel Alarcón-Rivera, Raúl Aguilera-Eguía, Juan Maureira-Sánchez, Ángel Roco-Videla

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.