Análise quantitativa das forças articulares e das reações musculoesqueléticas nas variações do agachamento: uma revisão sistemática

Autores

  • Soraya Jadue Arriaza Universidade Austral do Chile
  • David Ismael Ergas Schleef Universidade santo tomas
  • Yoselyn Yudith Reyes Sanchez Universidade santo tomas
  • Rocio Beatriz Bustos Barahona Universidade santo tomas
  • Mauricio Ernesto Tauda Tauda Universidade santo tomas https://orcid.org/0009-0000-4864-3337

DOI:

https://doi.org/10.47197/retos.v72.116926

Palavras-chave:

Biomecânica do movimento humano, articulação do joelho, carga articular, agachamento, treino de força, qualidade de vida

Resumo

Introdução: O agachamento é um exercício essencial no treino de força e muito utilizado na reabilitação e prevenção de lesões. A sua execução adequada requer o controlo da força articular, da ativação muscular e da estabilidade do joelho. A análise biomecânica permite compreender o impacto das cargas nas diferentes articulações, otimizando a sua aplicação clínica e desportiva.

Objectivo: Analisar quantitativamente as cargas biomecânicas (forças compressivas, torques articulares, stresse patelofemoral e activação muscular) geradas por diferentes variações do agachamento para orientar a sua prescrição em contextos terapêuticos e de desempenho.

Metodologia: Foi conduzida uma revisão sistemática dos estudos experimentais publicados entre 2018 e 2024 nas bases de dados PubMed, Scopus, Web of Science, Biblioteca Cochrane, Embase e Google Scholar. Foram incluídos estudos que mediram as forças tibiofemoral e patelofemoral, bem como a ativação muscular através de eletromiografia.

Resultados: Foram analisados ​​onze estudos (203 participantes), com uma média de idades de 25 ± 5 anos. As variações incluíram agachamentos com barra, agachamentos com barra frontal, agachamentos com bandas elásticas, agachamentos em superfícies instáveis ​​(BOSU), agachamentos unipodais e adaptações terapêuticas. O aumento da carga externa (até 80% de 1RM) aumentou significativamente a força compressiva tibiofemoral. As bandas elásticas reduziram os torques extensores e valgistas; o feedback visual e a elevação dos calcanhares diminuíram o stresse patelofemoral e melhoraram a profundidade. Os agachamentos unipodais geraram maior carga femoro-rotuliana.

Conclusão: A prescrição do agachamento deve ser personalizada. Em fases iniciais da reabilitação, recomendam-se variações com menor carga articular; em fases avançadas, podem ser incorporadas variações profundas com progressão controlada. Os ajustes posturais e mecânicos otimizam a segurança e a eficácia terapêutica.

Biografias do Autor

  • Soraya Jadue Arriaza, Universidade Austral do Chile

    Preparador Físico

    Mestrado em Exercício Físico e Saúde

  • David Ismael Ergas Schleef, Universidade santo tomas

    Professor de Educação Física
    Diploma em Educação Superior
    Mestrado em Atividade Física e Saúde

  • Yoselyn Yudith Reyes Sanchez, Universidade santo tomas

    Kinesiologista
    Mestrado em Exercício Físico e Saúde

  • Rocio Beatriz Bustos Barahona, Universidade santo tomas

    Kinesiologista
    Mestrado em Exercício Físico e Saúde

  • Mauricio Ernesto Tauda Tauda, Universidade santo tomas

    Preparador Físico
    Professor de Educação Física
    Diploma em Fisiologia do Exercício
    Mestre em Fisiologia Clínica do Exercício
    Doutoranda em Atividade Física e Saúde, UNINI México

Referências

Asayama, A., Tateuchi, H., Yamagata, M., & Ichihashi, N. (2021). Influence of stance width and toe di-rection on medial knee contact force during bodyweight squats. Journal of Biomechanics, 129, 110824. https://doi.org/10.1016/j.jbiomech.2021.110824

Awad, A. J., Ghasemi, G. A., Sadeghi, M., & Esmaeili, H. (2025). El efecto de 8 semanas de entrenamiento de resistencia en el ángulo de flexión de la cadera y la rodilla, la propiocepción y el rendimien-to muscular después de la reconstrucción del ligamento cruzado anterior. Retos, 69, 963–972. https://doi.org/10.47197/retos.v69.114042

Bell, D. R., Sanfilippo, J. L., Binkley, N., & Heiderscheit, B. C. (2013). Neuromuscular control and valgus loading during dynamic activities. Sports Health, 5(6), 539–546. https://doi.org/10.1177/1941738113498703

Bini, R. R., Lock, M., & Hommelhoff, G. (2020). Lower limb muscle and joint forces during front and back squats performed on a Smith machine. Isokinetics and Exercise Science, 29(4), 311–319. https://doi.org/10.3233/IES-202168

Boccia, G., Brustio, P. R., Buttacchio, G., Calabrese, M., Bruzzone, M., Casale, R., & Rainoldi, A. (2018). Interlimb asymmetries identified using the rate of torque development in ballistic contraction targeting submaximal torques. Frontiers in Physiology, 9, 1701. https://doi.org/10.3389/fphys.2018.01701

Bravo Paños, I., & Marquina Nieto, M. (2025). Efecto del entrenamiento con sobrecarga excéntrica sobre el rendimiento de la fase concéntrica en ejercicios de fuerza: Una revisión sistemática. Retos, 65, 600–613. https://doi.org/10.47197/retos.v65.111240

Capkin, S., Zeybek, G., Ergur, I., Kosay, C., & Kiray, A. (2017). An anatomic study of the lateral patello-femoral ligament. Acta Orthopaedica et Traumatologica Turcica, 51(1), 73–76. https://doi.org/10.1016/j.aott.2016.07.009

Chang, A., Hayes, K., Bae, J. Y., LaValley, M. P., Felson, D. T., & Segal, N. A. (2020). Foot progression angle and medial knee loading: A gait analysis in early osteoarthritis. Osteoarthritis and Carti-lage, 28(10), 1346–1354. https://doi.org/10.1016/j.joca.2020.06.008

Dagnese, F., de Assis Martins, E., da Silva, F. S., Mota, C. B., & Copetti, F. (2024). Joint knee loads during squat with constant or variable resistance in males: A clinical trial. Journal of Bodywork and Movement Therapies, 37, 392–398. https://doi.org/10.1016/j.jbmt.2023.11.044

Dai, B., Herman, D., Liu, H., Garrett, W. E., & Yu, B. (2014). Preventing anterior cruciate ligament injuries with neuromuscular training. Sports Health, 6(2), 147–152. https://doi.org/10.1177/1941738113517856

Dauty, M., Menu, P., Daley, P., Grondin, J., Quinette, Y., Crenn, V., & Fouasson-Chailloux, A. (2022). Knee strength assessment and clinical evaluation could predict return to running after anterior cruciate ligament reconstruction using patellar tendon procedure. International Journal of Environmental Research and Public Health, 19(20), 13396. https://doi.org/10.3390/ijerph192013396

Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomized and non-randomized studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377–384. https://doi.org/10.1136/jech.52.6.377

Escamilla, R., Zheng, N. N., MacLeod, T. D., & Imamura, R. (2023). Patellofemoral joint loading during the wall and ball squat with heel-to-wall-distance variations. Medicine & Science in Sports & Exercise, 55(9S), 748–749. https://doi.org/10.1249/01.mss.0000986868.11471.7a

Escamilla, R., Zheng, N., MacLeod, T. D., Imamura, R., Wilk, K. E., Wang, S., Asuncion, R., Thompson, I. S., Aguinaldo, A. L., & Fleisig, G. S. (2025). Patellofemoral joint loading during bodyweight one-legged and two-legged BOSU and floor squats. International Journal of Sports Physical Therapy, 20(2), 199–209. https://doi.org/10.26603/001c.128628

Brinlee, A. W., Dickenson, S. B., Hunter-Giordano, A., & Snyder-Mackler, L. (2022). ACL reconstruction rehabilitation: Clinical data, biologic healing, and criterion-based milestones to inform a re-turn-to-sport guideline. Sports Health, 14(5), 770–779. https://doi.org/10.1177/19417381211056873

Feria Madueño, A., De Hoyo Lora, M., Fernandez Roldan, K., Romero Boza, S., Mateo Cortés, J., & Sañu-do Corrales, B. (2014). Diferencias de género en la estabilización de rodilla en aterrizajes de salto. Retos, 26, 178–179. https://doi.org/10.47197/retos.v0i26.34463

Flores, V. A., Becker, J., Burkhardt, E., & Cotter, J. (2020). Knee kinetics during squats of varying loads and depths in recreationally trained females. Journal of Strength and Conditioning Research, 34(7), 1945–1952. https://doi.org/10.1519/JSC.0000000000002509

Forman, M. R., Witte, A. R., & Butler, R. J. (2023). The use of elastic resistance bands to reduce dynamic knee valgus in squat-based movements: A systematic review. International Journal of Sports Physical Therapy, 18(2), 234–243. https://doi.org/10.26603/001c.74258

Gooyers, C. E., Beach, T. A. C., & Callaghan, J. P. (2012). The influence of resistance bands on frontal plane knee mechanics during body-weight squat and vertical jump. Journal of Strength and Conditioning Research, 26(2), 390–399. https://doi.org/10.1519/JSC.0b013e318220e7a5

Hamdan, M., Mohd Noh, S. N., Yeo, W. K., Sharir, R., Adi, S., Raharjo, S., & Raja Azidin, R. M. F. (2025). Los efectos de los programas de prevención de lesiones para mitigar los marcadores biomecá-nicos del riesgo de lesión del LCA durante la fatiga en jugadores de fútbol. Retos, 70, 893–906. https://doi.org/10.47197/retos.v70.110797

Hartmann, H., Wirth, K., Klusemann, M., Dalic, J., Matuschek, C., & Schmidtbleicher, D. (2013). Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Medicine, 43(10), 993–1008. https://doi.org/10.1007/s40279-013-0073-6

Holmgren, D., Noory, S., Moström, E., Grindem, H., Stålman, A., & Wörner, T. (2024). Weaker quadri-ceps muscle strength with a quadriceps tendon graft compared with a patellar or hamstring tendon graft at 7 months after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 52(1), 69–76. https://doi.org/10.1177/03635465231209442

Ishida, T., Ueno, R., Kitamura, Y., Yamakawa, Y., Samukawa, M., & Tohyama, H. (2025). The effect of real-time feedback regarding the center-of-pressure position on patellofemoral joint loading during double-leg squatting. Orthopaedic Journal of Sports Medicine, 13(3), 23259671251319526. https://doi.org/10.1177/23259671251319526

Kernozek, T. W., Gheidi, N., Zellmer, M., Hove, J., Heinert, B. L., & Torry, M. R. (2018). Efectos del des-plazamiento anterior de la rodilla durante la sentadilla sobre la tensión de la articulación pate-lofemoral. Journal of Sport Rehabilitation, 27(3), 237–243. https://doi.org/10.1123/jsr.2016-0197

Khuu, S., Feehan, L. M., Nasr, S., & Adili, A. (2022). Unilateral vs. bilateral squats: Differences in balan-ce, activation, and motor control. Journal of Human Kinetics, 83, 135–146. https://doi.org/10.2478/hukin-2022-0011

Kothurkar, N. K., Sahu, A., Koti, D. D., & Arora, A. (2022). Estimation and comparison of knee joint con-tact forces during heel contact and heel rise deep squatting. Journal of Biomechanics, 145, 111374. https://doi.org/10.1016/j.jbiomech.2022.111374

Krause, D. A., Schafer, C., Hollman, J. H., & McCarty, C. A. (2022). Split squat interventions for neuromuscular retraining: A systematic review. Physical Therapy in Sport, 57, 54–63. https://doi.org/10.1016/j.ptsp.2022.07.005

Kukić, F., Mrdaković, V., Stanković, A., & Ilić, D. (2022). Efectos del ángulo de la articulación de exten-sión de la rodilla en la activación del músculo cuádriceps femoral y el torque ejercido en la contracción isométrica voluntaria máxima. Biology (Basel), 11(10), 1490. https://doi.org/10.3390/biology11101490

Li, X., Adrien, N., Baker, J. S., Mei, Q., & Gu, Y. (2021). Novice female exercisers exhibited different bio-mechanical loading profiles during full-squat and half-squat practice. Biology (Basel), 10(11), 1184. https://doi.org/10.3390/biology10111184

Lorenzetti, S., Ostermann, M., Zeidler, F., Zimmer, P., Jentsch, L., List, R., & Taylor, W. R. (2022). Biomechanical comparison of front and back squats: Implications for lumbar and knee loading. Scandinavian Journal of Medicine & Science in Sports, 32(1), 87–95. https://doi.org/10.1111/sms.14017

Mata, A. J., Hayashi, H., Moreno, P. A., Dudley, R. I., & Sorenson, E. A. (2021). Hip flexion angles during supine range of motion and bodyweight squats. International Journal of Exercise Science, 14(1), 912–918. http://www.intjexersci.com/volume-14-number-1-2021/

Moola, S., Munn, Z., Tufanaru, C., Aromataris, E., Sears, K., Sfetcu, R., Currie, M., Qureshi, R., Mattis, P., & Lisy, K. (2020). Chapter 7: Systematic reviews of etiology and risk. In E. Aromataris & Z. Munn (Eds.), JBI manual for evidence synthesis. Joanna Briggs Institute. https://doi.org/10.46658/JBIMES-20-08

Pal, S., Besier, T. F., Gold, G. E., Fredericson, M., Delp, S. L., & Beaupre, G. S. (2018). Patellofemoral cartilage stresses are most sensitive to variations in vastus medialis muscle forces. Computer Methods in Biomechanics and Biomedical Engineering, 22(2), 123–135. https://doi.org/10.1080/10255842.2018.1544629

Papadakis, Z., Stamatis, A., Almajid, R., Appiah-Kubi, K., Smith, M. L., Parnes, N., & Boolani, A. (2024). Biomechanical errors in the back squat in older adults: A clinical perspective on maintaining spinal and knee alignment. Journal of Functional Morphology and Kinesiology, 9(4), 224. https://doi.org/10.3390/jfmk9040224

Patel, R. S., Kumar, M., Gupta, A., & Singh, H. (2024). Haptic feedback systems for patellofemoral load modulation during closed kinetic chain tasks. Sensors, 24(2), 233. https://doi.org/10.3390/s24020233

Powers, C. M. (2010). The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. Journal of Orthopaedic & Sports Physical Therapy, 40(2), 42–51. https://doi.org/10.2519/jospt.2010.3337

Dal Maso, F., Michaud, J., Drapeau, A., & Simoneau, M. (2018). Maximal and submaximal torques du-ring isometric and dynamic knee extensions. Frontiers in Physiology, 9, 1701. https://doi.org/10.3389/fphys.2018.01701

Pollard, J. P., Porter, W. L., & Redfern, M. S. (2011). Forces and moments on the knee during kneeling and squatting. Journal of Applied Biomechanics, 27(3), 233–241. https://doi.org/10.1123/jab.27.3.233

Reece, C. L., Hogg, J. A., & Pizzari, T. (2020). Barbell back squat: How do resistance bands affect muscle activation and knee kinematics? Journal of Strength and Conditioning Research, 34(5), 1271–1278. https://doi.org/10.1519/JSC.0000000000003568

Reiman, M. P., Louder, T. J., Poitras, S., Bolgla, L. A., Leblanc, D. R., & Cook, C. E. (2023). The effects of squat depth and load on lower extremity biomechanics: A meta-analytic review. Sports Medici-ne, 53(1), 1–18. https://doi.org/10.1007/s40279-022-01694-w

Schoenfeld, B. J., Ogborn, D., & Krieger, J. W. (2016). Effects of resistance training volume on muscle hypertrophy: A systematic review and meta-analysis. Journal of Sports Sciences, 35(11), 1073–1082. https://doi.org/10.1080/02640414.2016.1210197

Song, Y., Zhang, Q., Tang, Y., Liu, M., Wu, Y., & Zeng, Y. (2023). Effects of step lengths on biomechanical characteristics of lower extremity during split squat movement. Frontiers in Bioengineering and Biotechnology, 11, 1277493. https://doi.org/10.3389/fbioe.2023.1277493

Straub, R. K., & Powers, C. M. (2024). A biomechanical review of the squat exercise: Implications for clinical practice. International Journal of Sports Physical Therapy, 19(4), 490–501. https://doi.org/10.26603/001c.94600

San Martín Barra, C. M., Rojas Cabezas, G., & Troc Gajardo, J. (2021). Propuesta de modelo predictivo de riesgo de lesión en base a descriptores anatómicos y funcionales que se relacionan con la inestabilidad articular en rodilla y tobillo en jugadores de baloncesto no profesionales. Retos, 39, 257–263. https://doi.org/10.47197/retos.v0i39.76987

Siljander, B., Tompkins, M., & Martinez-Cano, J. P. (2022). A review of the lateral patellofemoral joint: Anatomy, biomechanics, and surgical procedures. Journal of the American Academy of Orthopaedic Surgeons Global Research & Reviews, 6(7), e21.00255. https://doi.org/10.5435/JAAOSGlobal-D-21-00255

Thambyah, A., & Fernandez, J. (2014). Squatting related tibiofemoral shear reaction forces and a bio-mechanical rationale for femoral component loosening. The Scientific World Journal, Article ID 785175. https://doi.org/10.1155/2014/785175

Torres-Torrelo, J., Rodríguez-Rosell, D., & González-Badillo, J. J. (2017). Un programa de entrenamien-to de sentadilla completa con carga ligera y velocidad máxima de levantamiento mejora impor-tantes características físicas y de habilidad en jugadores de fútbol sala. Journal of Sports Sciences, 35(10), 967–975. https://doi.org/10.1080/02640414.2016.1206663

Wheatley, M. G. A., Rainbow, M. J., & Clouthier, A. L. (2020). Patellofemoral mechanics: A review of pathomechanics and research approaches. Current Reviews in Musculoskeletal Medicine, 13(3), 326–337. https://doi.org/10.1007/s12178-020-09626-y

Yagi, M., Taniguchi, M., Tateuchi, H., Hirono, T., Yamagata, M., Umehara, J., Nojiri, S., Kobayashi, M., & Ichihashi, N. (2022). Relationship between individual forces of each quadriceps head during low-load knee extension and cartilage thickness and knee pain in women with knee osteoarthritis. Clinical Biomechanics, 91, 105546. https://doi.org/10.1016/j.clinbiomech.2021.105546

Zelle, M., Heinrich, K., & Ellegast, R. P. (2021). Estimation of tibiofemoral and patellofemoral joint forces during squatting and kneeling. Applied Sciences, 12(1), 255. https://doi.org/10.3390/app12010255

Zhang, Y., Chen, K., Liu, K., Wang, Q., Ma, Y., Pang, B., Huang, L., & Ma, Y. (2023). New prediction equations for knee isokinetic strength in young and middle-aged non-athletes. BMC Public Health, 23(1), 2558. https://doi.org/10.1186/s12889-023-17478-7

Zhang, Y., Chen, X., Liu, H., Wang, L., Tan, Z., & Sun, J. (2024). Effects of heel-elevated squats on postu-ral control and joint kinematics in older adults. Gait & Posture, 108, 141–148. https://doi.org/10.1016/j.gaitpost.2024.04.002

Publicado

09/03/2025

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Como Citar

Jadue Arriaza, S., Ergas Schleef, D. I., Reyes Sanchez, Y. Y., Bustos Barahona, R. B., & Tauda Tauda, M. E. (2025). Análise quantitativa das forças articulares e das reações musculoesqueléticas nas variações do agachamento: uma revisão sistemática. Retos, 72, 206-223. https://doi.org/10.47197/retos.v72.116926