Quantitative analysis of joint forces and musculoskeletal reactions in squat variations: a systematic review
DOI:
https://doi.org/10.47197/retos.v72.116926Keywords:
Biomechanics of human movement: knee joint, joint load 3; squat, strength exercise, quality of lifeAbstract
Introduction: The squat is a fundamental exercise in strength training and is widely used in rehabilitation and injury prevention. Its correct execution requires control of joint forces, muscle activation, and knee stability. Biomechanical analysis allows for understanding the impact of loads on different joints, optimizing its clinical and sports application.
Objective: To quantitatively analyze biomechanical loads compressive forces, joint torques, patellofemoral stress, and muscle activation generated by different squat variations to guide their prescription in therapeutic and performance contexts.
Methods: A systematic review was conducted of experimental studies published between 2018 and 2024 in PubMed, Scopus, Web of Science, Cochrane Library, Embase, and Google Scholar. Studies measuring tibiofemoral and patellofemoral forces, as well as muscle activation through electromyography, were included.
Results: Eleven studies (203 participants; mean age 25 ± 5 years) were analyzed. Variations included back squats, front squats, squats with elastic bands, on unstable surfaces (BOSU), single-leg squats, and therapeutic adaptations. Increases in external load (up to 80% 1RM) significantly raised tibiofemoral compressive force. Elastic bands reduced extensor and valgus torques; visual feedback and heel elevation decreased patellofemoral stress and improved depth. Single-leg squats generated greater femoropatellar load.
Conclusion: Squat prescription should be individualized, in early rehabilitation phases, variations with lower joint load are recommended, in advanced stages, deep squat variations with controlled progression may be incorporated. Postural and mechanical adjustments optimize therapeutic safety and effectiveness.
References
Asayama, A., Tateuchi, H., Yamagata, M., & Ichihashi, N. (2021). Influence of stance width and toe di-rection on medial knee contact force during bodyweight squats. Journal of Biomechanics, 129, 110824. https://doi.org/10.1016/j.jbiomech.2021.110824
Awad, A. J., Ghasemi, G. A., Sadeghi, M., & Esmaeili, H. (2025). El efecto de 8 semanas de entrenamiento de resistencia en el ángulo de flexión de la cadera y la rodilla, la propiocepción y el rendimien-to muscular después de la reconstrucción del ligamento cruzado anterior. Retos, 69, 963–972. https://doi.org/10.47197/retos.v69.114042
Bell, D. R., Sanfilippo, J. L., Binkley, N., & Heiderscheit, B. C. (2013). Neuromuscular control and valgus loading during dynamic activities. Sports Health, 5(6), 539–546. https://doi.org/10.1177/1941738113498703
Bini, R. R., Lock, M., & Hommelhoff, G. (2020). Lower limb muscle and joint forces during front and back squats performed on a Smith machine. Isokinetics and Exercise Science, 29(4), 311–319. https://doi.org/10.3233/IES-202168
Boccia, G., Brustio, P. R., Buttacchio, G., Calabrese, M., Bruzzone, M., Casale, R., & Rainoldi, A. (2018). Interlimb asymmetries identified using the rate of torque development in ballistic contraction targeting submaximal torques. Frontiers in Physiology, 9, 1701. https://doi.org/10.3389/fphys.2018.01701
Bravo Paños, I., & Marquina Nieto, M. (2025). Efecto del entrenamiento con sobrecarga excéntrica sobre el rendimiento de la fase concéntrica en ejercicios de fuerza: Una revisión sistemática. Retos, 65, 600–613. https://doi.org/10.47197/retos.v65.111240
Capkin, S., Zeybek, G., Ergur, I., Kosay, C., & Kiray, A. (2017). An anatomic study of the lateral patello-femoral ligament. Acta Orthopaedica et Traumatologica Turcica, 51(1), 73–76. https://doi.org/10.1016/j.aott.2016.07.009
Chang, A., Hayes, K., Bae, J. Y., LaValley, M. P., Felson, D. T., & Segal, N. A. (2020). Foot progression angle and medial knee loading: A gait analysis in early osteoarthritis. Osteoarthritis and Carti-lage, 28(10), 1346–1354. https://doi.org/10.1016/j.joca.2020.06.008
Dagnese, F., de Assis Martins, E., da Silva, F. S., Mota, C. B., & Copetti, F. (2024). Joint knee loads during squat with constant or variable resistance in males: A clinical trial. Journal of Bodywork and Movement Therapies, 37, 392–398. https://doi.org/10.1016/j.jbmt.2023.11.044
Dai, B., Herman, D., Liu, H., Garrett, W. E., & Yu, B. (2014). Preventing anterior cruciate ligament injuries with neuromuscular training. Sports Health, 6(2), 147–152. https://doi.org/10.1177/1941738113517856
Dauty, M., Menu, P., Daley, P., Grondin, J., Quinette, Y., Crenn, V., & Fouasson-Chailloux, A. (2022). Knee strength assessment and clinical evaluation could predict return to running after anterior cruciate ligament reconstruction using patellar tendon procedure. International Journal of Environmental Research and Public Health, 19(20), 13396. https://doi.org/10.3390/ijerph192013396
Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomized and non-randomized studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377–384. https://doi.org/10.1136/jech.52.6.377
Escamilla, R., Zheng, N. N., MacLeod, T. D., & Imamura, R. (2023). Patellofemoral joint loading during the wall and ball squat with heel-to-wall-distance variations. Medicine & Science in Sports & Exercise, 55(9S), 748–749. https://doi.org/10.1249/01.mss.0000986868.11471.7a
Escamilla, R., Zheng, N., MacLeod, T. D., Imamura, R., Wilk, K. E., Wang, S., Asuncion, R., Thompson, I. S., Aguinaldo, A. L., & Fleisig, G. S. (2025). Patellofemoral joint loading during bodyweight one-legged and two-legged BOSU and floor squats. International Journal of Sports Physical Therapy, 20(2), 199–209. https://doi.org/10.26603/001c.128628
Brinlee, A. W., Dickenson, S. B., Hunter-Giordano, A., & Snyder-Mackler, L. (2022). ACL reconstruction rehabilitation: Clinical data, biologic healing, and criterion-based milestones to inform a re-turn-to-sport guideline. Sports Health, 14(5), 770–779. https://doi.org/10.1177/19417381211056873
Feria Madueño, A., De Hoyo Lora, M., Fernandez Roldan, K., Romero Boza, S., Mateo Cortés, J., & Sañu-do Corrales, B. (2014). Diferencias de género en la estabilización de rodilla en aterrizajes de salto. Retos, 26, 178–179. https://doi.org/10.47197/retos.v0i26.34463
Flores, V. A., Becker, J., Burkhardt, E., & Cotter, J. (2020). Knee kinetics during squats of varying loads and depths in recreationally trained females. Journal of Strength and Conditioning Research, 34(7), 1945–1952. https://doi.org/10.1519/JSC.0000000000002509
Forman, M. R., Witte, A. R., & Butler, R. J. (2023). The use of elastic resistance bands to reduce dynamic knee valgus in squat-based movements: A systematic review. International Journal of Sports Physical Therapy, 18(2), 234–243. https://doi.org/10.26603/001c.74258
Gooyers, C. E., Beach, T. A. C., & Callaghan, J. P. (2012). The influence of resistance bands on frontal plane knee mechanics during body-weight squat and vertical jump. Journal of Strength and Conditioning Research, 26(2), 390–399. https://doi.org/10.1519/JSC.0b013e318220e7a5
Hamdan, M., Mohd Noh, S. N., Yeo, W. K., Sharir, R., Adi, S., Raharjo, S., & Raja Azidin, R. M. F. (2025). Los efectos de los programas de prevención de lesiones para mitigar los marcadores biomecá-nicos del riesgo de lesión del LCA durante la fatiga en jugadores de fútbol. Retos, 70, 893–906. https://doi.org/10.47197/retos.v70.110797
Hartmann, H., Wirth, K., Klusemann, M., Dalic, J., Matuschek, C., & Schmidtbleicher, D. (2013). Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Medicine, 43(10), 993–1008. https://doi.org/10.1007/s40279-013-0073-6
Holmgren, D., Noory, S., Moström, E., Grindem, H., Stålman, A., & Wörner, T. (2024). Weaker quadri-ceps muscle strength with a quadriceps tendon graft compared with a patellar or hamstring tendon graft at 7 months after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 52(1), 69–76. https://doi.org/10.1177/03635465231209442
Ishida, T., Ueno, R., Kitamura, Y., Yamakawa, Y., Samukawa, M., & Tohyama, H. (2025). The effect of real-time feedback regarding the center-of-pressure position on patellofemoral joint loading during double-leg squatting. Orthopaedic Journal of Sports Medicine, 13(3), 23259671251319526. https://doi.org/10.1177/23259671251319526
Kernozek, T. W., Gheidi, N., Zellmer, M., Hove, J., Heinert, B. L., & Torry, M. R. (2018). Efectos del des-plazamiento anterior de la rodilla durante la sentadilla sobre la tensión de la articulación pate-lofemoral. Journal of Sport Rehabilitation, 27(3), 237–243. https://doi.org/10.1123/jsr.2016-0197
Khuu, S., Feehan, L. M., Nasr, S., & Adili, A. (2022). Unilateral vs. bilateral squats: Differences in balan-ce, activation, and motor control. Journal of Human Kinetics, 83, 135–146. https://doi.org/10.2478/hukin-2022-0011
Kothurkar, N. K., Sahu, A., Koti, D. D., & Arora, A. (2022). Estimation and comparison of knee joint con-tact forces during heel contact and heel rise deep squatting. Journal of Biomechanics, 145, 111374. https://doi.org/10.1016/j.jbiomech.2022.111374
Krause, D. A., Schafer, C., Hollman, J. H., & McCarty, C. A. (2022). Split squat interventions for neuromuscular retraining: A systematic review. Physical Therapy in Sport, 57, 54–63. https://doi.org/10.1016/j.ptsp.2022.07.005
Kukić, F., Mrdaković, V., Stanković, A., & Ilić, D. (2022). Efectos del ángulo de la articulación de exten-sión de la rodilla en la activación del músculo cuádriceps femoral y el torque ejercido en la contracción isométrica voluntaria máxima. Biology (Basel), 11(10), 1490. https://doi.org/10.3390/biology11101490
Li, X., Adrien, N., Baker, J. S., Mei, Q., & Gu, Y. (2021). Novice female exercisers exhibited different bio-mechanical loading profiles during full-squat and half-squat practice. Biology (Basel), 10(11), 1184. https://doi.org/10.3390/biology10111184
Lorenzetti, S., Ostermann, M., Zeidler, F., Zimmer, P., Jentsch, L., List, R., & Taylor, W. R. (2022). Biomechanical comparison of front and back squats: Implications for lumbar and knee loading. Scandinavian Journal of Medicine & Science in Sports, 32(1), 87–95. https://doi.org/10.1111/sms.14017
Mata, A. J., Hayashi, H., Moreno, P. A., Dudley, R. I., & Sorenson, E. A. (2021). Hip flexion angles during supine range of motion and bodyweight squats. International Journal of Exercise Science, 14(1), 912–918. http://www.intjexersci.com/volume-14-number-1-2021/
Moola, S., Munn, Z., Tufanaru, C., Aromataris, E., Sears, K., Sfetcu, R., Currie, M., Qureshi, R., Mattis, P., & Lisy, K. (2020). Chapter 7: Systematic reviews of etiology and risk. In E. Aromataris & Z. Munn (Eds.), JBI manual for evidence synthesis. Joanna Briggs Institute. https://doi.org/10.46658/JBIMES-20-08
Pal, S., Besier, T. F., Gold, G. E., Fredericson, M., Delp, S. L., & Beaupre, G. S. (2018). Patellofemoral cartilage stresses are most sensitive to variations in vastus medialis muscle forces. Computer Methods in Biomechanics and Biomedical Engineering, 22(2), 123–135. https://doi.org/10.1080/10255842.2018.1544629
Papadakis, Z., Stamatis, A., Almajid, R., Appiah-Kubi, K., Smith, M. L., Parnes, N., & Boolani, A. (2024). Biomechanical errors in the back squat in older adults: A clinical perspective on maintaining spinal and knee alignment. Journal of Functional Morphology and Kinesiology, 9(4), 224. https://doi.org/10.3390/jfmk9040224
Patel, R. S., Kumar, M., Gupta, A., & Singh, H. (2024). Haptic feedback systems for patellofemoral load modulation during closed kinetic chain tasks. Sensors, 24(2), 233. https://doi.org/10.3390/s24020233
Powers, C. M. (2010). The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. Journal of Orthopaedic & Sports Physical Therapy, 40(2), 42–51. https://doi.org/10.2519/jospt.2010.3337
Dal Maso, F., Michaud, J., Drapeau, A., & Simoneau, M. (2018). Maximal and submaximal torques du-ring isometric and dynamic knee extensions. Frontiers in Physiology, 9, 1701. https://doi.org/10.3389/fphys.2018.01701
Pollard, J. P., Porter, W. L., & Redfern, M. S. (2011). Forces and moments on the knee during kneeling and squatting. Journal of Applied Biomechanics, 27(3), 233–241. https://doi.org/10.1123/jab.27.3.233
Reece, C. L., Hogg, J. A., & Pizzari, T. (2020). Barbell back squat: How do resistance bands affect muscle activation and knee kinematics? Journal of Strength and Conditioning Research, 34(5), 1271–1278. https://doi.org/10.1519/JSC.0000000000003568
Reiman, M. P., Louder, T. J., Poitras, S., Bolgla, L. A., Leblanc, D. R., & Cook, C. E. (2023). The effects of squat depth and load on lower extremity biomechanics: A meta-analytic review. Sports Medici-ne, 53(1), 1–18. https://doi.org/10.1007/s40279-022-01694-w
Schoenfeld, B. J., Ogborn, D., & Krieger, J. W. (2016). Effects of resistance training volume on muscle hypertrophy: A systematic review and meta-analysis. Journal of Sports Sciences, 35(11), 1073–1082. https://doi.org/10.1080/02640414.2016.1210197
Song, Y., Zhang, Q., Tang, Y., Liu, M., Wu, Y., & Zeng, Y. (2023). Effects of step lengths on biomechanical characteristics of lower extremity during split squat movement. Frontiers in Bioengineering and Biotechnology, 11, 1277493. https://doi.org/10.3389/fbioe.2023.1277493
Straub, R. K., & Powers, C. M. (2024). A biomechanical review of the squat exercise: Implications for clinical practice. International Journal of Sports Physical Therapy, 19(4), 490–501. https://doi.org/10.26603/001c.94600
San Martín Barra, C. M., Rojas Cabezas, G., & Troc Gajardo, J. (2021). Propuesta de modelo predictivo de riesgo de lesión en base a descriptores anatómicos y funcionales que se relacionan con la inestabilidad articular en rodilla y tobillo en jugadores de baloncesto no profesionales. Retos, 39, 257–263. https://doi.org/10.47197/retos.v0i39.76987
Siljander, B., Tompkins, M., & Martinez-Cano, J. P. (2022). A review of the lateral patellofemoral joint: Anatomy, biomechanics, and surgical procedures. Journal of the American Academy of Orthopaedic Surgeons Global Research & Reviews, 6(7), e21.00255. https://doi.org/10.5435/JAAOSGlobal-D-21-00255
Thambyah, A., & Fernandez, J. (2014). Squatting related tibiofemoral shear reaction forces and a bio-mechanical rationale for femoral component loosening. The Scientific World Journal, Article ID 785175. https://doi.org/10.1155/2014/785175
Torres-Torrelo, J., Rodríguez-Rosell, D., & González-Badillo, J. J. (2017). Un programa de entrenamien-to de sentadilla completa con carga ligera y velocidad máxima de levantamiento mejora impor-tantes características físicas y de habilidad en jugadores de fútbol sala. Journal of Sports Sciences, 35(10), 967–975. https://doi.org/10.1080/02640414.2016.1206663
Wheatley, M. G. A., Rainbow, M. J., & Clouthier, A. L. (2020). Patellofemoral mechanics: A review of pathomechanics and research approaches. Current Reviews in Musculoskeletal Medicine, 13(3), 326–337. https://doi.org/10.1007/s12178-020-09626-y
Yagi, M., Taniguchi, M., Tateuchi, H., Hirono, T., Yamagata, M., Umehara, J., Nojiri, S., Kobayashi, M., & Ichihashi, N. (2022). Relationship between individual forces of each quadriceps head during low-load knee extension and cartilage thickness and knee pain in women with knee osteoarthritis. Clinical Biomechanics, 91, 105546. https://doi.org/10.1016/j.clinbiomech.2021.105546
Zelle, M., Heinrich, K., & Ellegast, R. P. (2021). Estimation of tibiofemoral and patellofemoral joint forces during squatting and kneeling. Applied Sciences, 12(1), 255. https://doi.org/10.3390/app12010255
Zhang, Y., Chen, K., Liu, K., Wang, Q., Ma, Y., Pang, B., Huang, L., & Ma, Y. (2023). New prediction equations for knee isokinetic strength in young and middle-aged non-athletes. BMC Public Health, 23(1), 2558. https://doi.org/10.1186/s12889-023-17478-7
Zhang, Y., Chen, X., Liu, H., Wang, L., Tan, Z., & Sun, J. (2024). Effects of heel-elevated squats on postu-ral control and joint kinematics in older adults. Gait & Posture, 108, 141–148. https://doi.org/10.1016/j.gaitpost.2024.04.002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Soraya Jadue Arriaza, David Ismael Ergas Schleef, Yoselyn Yudith Reyes Sanchez, Rocio Beatriz Bustos Barahona, Mauricio Ernesto Tauda Tauda

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.