Previsão do consumo de drogas e do jogo em atletas jovens usando um modelo de RNA

Autores

DOI:

https://doi.org/10.47197/retos.v72.116535

Palavras-chave:

Desportos, drogas, juventude, uso de substâncias, rede neural artificial

Resumo

Introdução: A adolescência é considerada a fase crítica para o início do consumo de substâncias aditivas. O objetivo deste estudo é identificar o padrão de consumo de drogas ao longo da vida, considerando as principais drogas durante esta fase, analisando diversas variáveis ​​sociocontextuais.

Objectivo: Identificar o nível de consumo de drogas e de jogo ao longo da vida, utilizando variáveis ​​sociodemográficas.

Metodologia: Este estudo utiliza um desenho correlacional-preditivo ex post facto com 256 jogadores de futebol e futsal da capital Jaén. Foram obtidas informações sobre as seguintes variáveis ​​sociodemográficas: situação profissional do pai e da mãe, nível académico do pai e da mãe, situação económica da família e despesas semanais com lazer.

Resultados: A construção do modelo de RNA apresentou uma percentagem geral de respostas corretas de 83,4% no treino e 77,6% no teste. Os factores com maior peso na previsão do consumo de álcool, tabaco, canábis e jogo ao longo da vida são os gastos semanais em lazer (100%) e as finanças familiares (57,2%), enquanto o factor menos importante é a situação profissional da mãe (23%). Os níveis de ROC apresentam valores moderados a bons, com uma predição notável para valores de consumo superiores a 39 dias, com uma média de cerca de 0,872.

Conclusões: O consumo ao longo da vida das substâncias aditivas analisadas não pode ser abordado de forma linear. É necessário compreender os fatores sociodemográficos dos adolescentes e a sua interação entre si para identificar potenciais fatores de risco.

Referências

Alatawi, K. K. Z., Albalawi, K. S. D., Aljuhani, A. A. M., Albalawi, N. S. D., Alalawy, A. I., & Oyouni, A. A. A. (2022). Drug detection tests and the important factors and effects of the development of addic-tion. Journal of King Saud University - Science, 34(5), 102093. https://doi.org/10.1016/j.jksus.2022.102093

Alejandro, M. H. (2011). Consumo dealcohol y drogas en adolescentes. Revista Médica Clínica Las Con-des, 22(1), 98-109. https://doi.org/ 10.1016/S0716-8640(11)70397-2

Aschengrau, A., Grippo, A., & Winter, M. R. (2021). Influence of Family and Community Socioeconomic Status on the Risk of Adolescent Drug Use. Substance Use & Misuse, 56(5), 577-587. https://doi.org/10.1080/10826084.2021.1883660

Asensio-Hernández, M., & Jiménez-Martín, P.-J. (2022). Evaluación de la calidad del diseño de los pro-gramas de prevención de drogodependencias de la Red Aragonesa de Escuelas Promotoras de la Salud que incluyen actividad físico-deportiva como recurso de intervención 2010-2016. Ágo-ra para la Educación Física y el Deporte, 24, Article 24. https://doi.org/10.24197/aefd.24.2022.117-139

Bronfenbrenner, U. (1987). La ecología del desarrollo humano: Experimentos en entornos naturales y diseñados. https://dialnet.unirioja.es/servlet/libro?codigo=53045

Carbonneau, R., Vitaro, F., Brendgen, M., Boivin, M., Côté, S. M., & Tremblay, R. E. (2024). Differential Association of Preadolescent Risk Factors Across Developmental Patterns of Adolescent Con-current Gambling Participation and Substance Use. Journal of Gambling Studies, 40(4), 1965-1985. https://doi.org/10.1007/s10899-024-10358-8

Contreras, L. M. V., Cid, F. M., Ferro, E. F., Tobar, B. U., Herraz, C. C., Cardenas, R. G., Leon, C. R., & Vil-lacura, A. V. (2024). Autoestima y hábitos de vida saludable en estudiantes universitarios del área de la salud y pedagogía de una Universidad de Santiago de Chile (Self-esteem and healthy lifestyle habits in university students in the area of health and pedagogy at a University in San-tiago de Chile). Retos, 60, 666-671. https://doi.org/10.47197/retos.v60.106162

Cummins, K., & Lu, Y. (2022). Adolescents’ Perceptions of Substance Use Harms are Contingent on Mode of Administration and Type of Substance. Substance Abuse: Research and Treatment, 16, 11782218221119584. https://doi.org/10.1177/11782218221119584

Delcea, C., Nica, I., Ionescu, Ștefan, Cibu, B., & Țibrea, H. (2024). Mapping the Frontier: A Bibliometric Analysis of Artificial Intelligence Applications in Local and Regional Studies. Algorithms, 17(9), Article 9. https://doi.org/10.3390/a17090418

Di Franco, G., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & Quantity, 55(3), 1007-1025.

Diler, R. S., Merranko, J. A., Hafeman, D., Goldstein, T. R., Goldstein, B. I., Hower, H., Gill, M. K., Axelson, D. A., Ryan, N., Strober, M., Keller, M. B., Yen, S., Hunt, J. I., Weinstock, L. M., Iyengar, S., & Bir-maher, B. B. (2022). Higher socioeconomic status and less parental psychopathology improve prognosis in youths with bipolar disorder. Journal of Affective Disorders, 302, 185-193. https://doi.org/10.1016/j.jad.2022.01.058

Drost, E. A. (2011). Validity and Reliability in Social Science Research. Education Research and Per-spectives, 38(1), 105–123.

Duggan, B., & Mohan, G. (2023). A Longitudinal Examination of Young People’s Gambling Behaviours and Participation in Team Sports. Journal of Gambling Studies, 39(2), 541-557. https://doi.org/10.1007/s10899-022-10175-x

Fagan, M. J., Duncan, M. J., Bedi, R. P., Puterman, E., Leatherdale, S. T., & Faulkner, G. (2022). Physical activity and substance use among Canadian adolescents: Examining the moderating role of school connectedness. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.889987

Ganson, K. T., Rodgers, R. F., Murray, S. B., & Nagata, J. M. (2022). Associations between muscle-building exercise and concurrent e-cigarette, cigarette, and cannabis use among U.S. adoles-cents. PLOS ONE, 17(12), e0278903. https://doi.org/10.1371/journal.pone.0278903

Gerra, G., Benedetti, E., Resce, G., Potente, R., Cutilli, A., & Molinaro, S. (2020). Socioeconomic Status, Parental Education, School Connectedness and Individual Socio-Cultural Resources in Vulnera-bility for Drug Use among Students. International Journal of Environmental Research and Pub-lic Health, 17(4), Article 4. https://doi.org/10.3390/ijerph17041306

Gil-Vera, V. D., Quintero-López, C., Gil-Vera, V. D., & Quintero-López, C. (2021). Predicción del rendi-miento académico estudiantil con redes neuronales artificiales. Información tecnológica, 32(6), 221-228. https://doi.org/10.4067/S0718-07642021000600221

Hammond, M. A., Khurana, A., & Stormshak, E. A. (2021). Adolescent measures of family socioeconom-ic status: Reliability, validity, and effects on substance use behaviors in adolescence and young adulthood. Preventive Medicine Reports, 21, 101317. https://doi.org/10.1016/j.pmedr.2021.101317

Hu, Y. H., & Hwang, J. N. (Eds.). (2018). Handbook of neural network signal processing. CRC Press.

Hutchison, M., & Russell, B. S. (2021). Community Coalition Efforts to Prevent Adolescent Substance Use: A Systematic Review. Journal of Drug Education, 50(1-2), 3-30. https://doi.org/10.1177/00472379211016384

Jang, H., & Kim, J. (2023). Peers’ parental education and cardiovascular disease risk in adulthood: The mediating role of health-related behaviors. Social Science & Medicine, 320, 115673. https://doi.org/10.1016/j.socscimed.2023.115673

Kılıç, S. (2016). Cronbach’s alpha reliability coefficient. Journal of Mood Disorders, 6 (1), 47. https://doi.org/10.5455/jmood.20160307122823

Klamert, L., Craike, M., Bedi, G., Kidd, S., Pascoe, M. C., & Parker, A. G. (2023). Behaviour change tech-niques in physical activity-focused interventions for young people at risk of problematic sub-stance use: A systematic review and meta-analysis. Early Intervention in Psychiatry, 17(12), 1139-1153. https://doi.org/10.1111/eip.13467

Lin, J., & Guo, W. (2024). The Research on Risk Factors for Adolescents’ Mental Health. Behavioral Sciences, 14(4), 263. https://doi.org/10.3390/bs14040263

López-Del-Hoyo, Y., Monreal-Bartolomé, A., Aisa, P., Pérez-Aranda, A., Plana, C., Poblador, J. A., Caste-rad, J., García-Campayo, J., & Montero-Marin, J. (2022). The Gambling Habits of University Stu-dents in Aragon, Spain: A Cross-Sectional Study. International journal of environmental re-search and public health, 19(8), 4553. https://doi.org/10.3390/ijerph19084553

Lozza, E., Jarach, C. M., Sesini, G., Marta, E., Lugo, A., Santoro, E., Gallus, S., HBSC Lombardy Committee 2018, & members of the HBSC Lombardy Committee 2018. (2023). Should I give kids money? The role of pocket money on at-risk behaviors in Italian adolescents. Annali Dell’Istituto Supe-riore Di Sanita, 59(1), 37-42. https://doi.org/10.4415/ANN_23_01_06

Mariani, A. C., & Williams, A. R. (2021). Perceived risk of harm from monthly cannabis use among US adolescents: National Survey on drug Use and Health, 2017. Preventive Medicine Reports, 23, 101436. https://doi.org/10.1016/j.pmedr.2021.101436

Ministerio de Sanidad. (2022). Informe 2022. Alcohol, tabaco y drogas ilegales en España. Ministerio de Sanidad.

Ministerio de Sanidad. (2024). EDADES. Encuesta sobre Alcohol y Drogas en España.

Ministerio de Sanidad. (2024). Informe sobre Adicciones Comportamentales y Otros Trastornos Adicti-vos 2024: Indicador admitidos a tratamiento por adicciones comportamentales. Juego de azar, uso de videojuegos, uso problemático de internet y otros trastornos adictivos en las encuestas de drogas en España EDADES y ESTUDES.

Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379-425). Cham: Springer International Publishing.

Montgomery, L., Vaughn, L. M., & Jacquez, F. (2022). Engaging Adolescents in the Fight Against Drug Abuse and Addiction: A Concept Mapping Approach. Health Education & Behavior, 49(2), 272-280. https://doi.org/10.1177/10901981211068416

Motyka, M. A., & Al-Imam, A. (2022). Causes of Drug Initiation among Adolescents. Canadian Journal of Family And Youth, 14(1), 63-81.

Namdeo, S. K., & Rout, S. D. (2017). Calculating and interpreting Cronbach’s alpha using Rosenberg assessment scale on paediatrician’s attitude and perception on self esteem. International Jour-nal Of Community Medicine And Public Health, 3(6), 1371–1374. https://doi.org/10.18203/2394-6040.ijcmph20161448

Nawi, A. M., Ismail, R., Ibrahim, F., Hassan, M. R., Manaf, M. R. A., Amit, N., Ibrahim, N., & Shafurdin, N. S. (2021). Risk and protective factors of drug abuse among adolescents: A systematic review. BMC Public Health, 21(1), 2088. https://doi.org/10.1186/s12889-021-11906-2

Organización Mundial de la Salud. (2023). World Drug Report 2023.

Pérez-Albéniz, A., Gil, M., Díez-Gómez, A., Martín-Seoane, G., & Lucas-Molina, B. (2021). Gambling in Spanish Adolescents: Prevalence and Association with Mental Health Indicators. International journal of environmental research and public health, 19(1), 129. https://doi.org/10.3390/ijerph19010129

Priddy, K.L. & Keller, P.E. (2005). Artificial Neural Networks: An Introduction. Spie Digital Library. https://doi.org/10.1117/3.633187

Rodríguez-Ruiz, J., Zych, I., Llorent, V. J., Marín-López, I., Espejo-Siles, R., & Nasaescu, E. (2023). A lon-gitudinal study of protective factors against substance use in early adolescence. An ecological approach. International Journal of Drug Policy, 112, 103946. https://doi.org/10.1016/j.drugpo.2022.103946

Song, L., Huang, Z., Yang, S., Bu, D., Yi, N., & Zheng, X. (2024). Effectiveness of short-term exercise on drug rehabilitation effect for drug abusers: A systematic review and meta-analysis. Interna-tional Journal of Sport and Exercise Psychology, 22(9), 2111-2136. https://doi.org/10.1080/1612197X.2023.2264298

Steinberg, L. (2022). Adolescence (13th edition). McGraw-Hill Higher Education.

Sugimura, K., Hihara, S., Hatano, K., Nakama, R., Saiga, S., & Tsuzuki, M. (2023). Profiles of Emotional Separation and Parental Trust from Adolescence to Emerging Adulthood: Age Differences and Associations with Identity and Life Satisfaction. Journal of Youth and Adolescence, 52(3), 475-489. https://doi.org/10.1007/s10964-022-01716-z

Sun, S. (2025). Racial/Ethnic Heterogeneity in Parental Wealth and Substance Use from Adolescence to Young Adulthood. Journal of Racial and Ethnic Health Disparities, 12(1), 531-542. https://doi.org/10.1007/s40615-023-01893-y

Thompson, T. P., Horrell, J., Taylor, A. H., Wanner, A., Husk, K., Wei, Y., Creanor, S., Kandiyali, R., Neale, J., Sinclair, J., Nasser, M., & Wallace, G. (2020). Physical activity and the prevention, reduction, and treatment of alcohol and other drug use across the lifespan (The PHASE review): A sys-tematic review. Mental Health and Physical Activity, 19, 100360. https://doi.org/10.1016/j.mhpa.2020.100360

Wingerter, D. G., Santos, E. G. de O., & Barbosa, I. R. (2020). Uso de redes neurais artificiais para classi-ficação de municípios quanto à vulnerabilidade social no Estado do Rio Grande do Norte, Bra-sil. Cadernos de Saúde Pública, 36, e00038319. https://doi.org/10.1590/0102-311X00038319

Zhang, S., Wu, S., Wu, Q., Durkin, D. W., & Marsiglia, F. F. (2021). Adolescent drug use initiation and transition into other drugs: A retrospective longitudinal examination across race/ethnicity. Addictive Behaviors, 113, 106679. https://doi.org/10.1016/j.addbeh.2020.106679

Publicado

09/04/2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Armenteros Mayoral, J. C., Rodríguez-Sabiote, C., Michelle Vázquez, L., & Álvarez-Ferrándiz, D. (2025). Previsão do consumo de drogas e do jogo em atletas jovens usando um modelo de RNA. Retos, 72, 90-104. https://doi.org/10.47197/retos.v72.116535