Predicting drug use and gambling in young athletes using an ANN model

Authors

DOI:

https://doi.org/10.47197/retos.v72.116535

Keywords:

Drugs, Substance use, Artificial Neuronal Network, Young, Sport

Abstract

Introduction: adolescence is established as the critical stage for the onset of consumption of addictive substances. The aim of this study is to identify the pattern of lifetime consumption of the main drugs at this stage, analysing various socio-contextual variables.

Objective: identify the level of drug and gambling consumption in life by means of socio-demographic variables.

Methodology: this study uses ex post facto correlational-predictive design with 256 football and futsal players from the capital of Jaén. Information was obtained on the following socio-demographic variables: father's and mother's employment status, father's and mother's academic level, family economic level and weekly money spent on leisure.

Results: the construction of the ANN model showed an overall correct percentage in training of 83.4% and in the test of 77.6%. The most important predictors of lifetime use of alcohol, tobacco, cannabis and gambling are weekly leisure money (100%) and family finances (57.2%), while the least important predictor is the mother's employment status (23%). The ROC levels show moderate-good values, highlighting the prediction of consumption values above 39 days with a mean of around 0.872.

Conclussion: lifetime use of the addictive substances analysed cannot be approached in a linear fashion. It is necessary to know the socio-demographic factors of the adolescents and the interaction between them to be able to identify possible risk subjects.

References

Alatawi, K. K. Z., Albalawi, K. S. D., Aljuhani, A. A. M., Albalawi, N. S. D., Alalawy, A. I., & Oyouni, A. A. A. (2022). Drug detection tests and the important factors and effects of the development of addic-tion. Journal of King Saud University - Science, 34(5), 102093. https://doi.org/10.1016/j.jksus.2022.102093

Alejandro, M. H. (2011). Consumo dealcohol y drogas en adolescentes. Revista Médica Clínica Las Con-des, 22(1), 98-109. https://doi.org/ 10.1016/S0716-8640(11)70397-2

Aschengrau, A., Grippo, A., & Winter, M. R. (2021). Influence of Family and Community Socioeconomic Status on the Risk of Adolescent Drug Use. Substance Use & Misuse, 56(5), 577-587. https://doi.org/10.1080/10826084.2021.1883660

Asensio-Hernández, M., & Jiménez-Martín, P.-J. (2022). Evaluación de la calidad del diseño de los pro-gramas de prevención de drogodependencias de la Red Aragonesa de Escuelas Promotoras de la Salud que incluyen actividad físico-deportiva como recurso de intervención 2010-2016. Ágo-ra para la Educación Física y el Deporte, 24, Article 24. https://doi.org/10.24197/aefd.24.2022.117-139

Bronfenbrenner, U. (1987). La ecología del desarrollo humano: Experimentos en entornos naturales y diseñados. https://dialnet.unirioja.es/servlet/libro?codigo=53045

Carbonneau, R., Vitaro, F., Brendgen, M., Boivin, M., Côté, S. M., & Tremblay, R. E. (2024). Differential Association of Preadolescent Risk Factors Across Developmental Patterns of Adolescent Con-current Gambling Participation and Substance Use. Journal of Gambling Studies, 40(4), 1965-1985. https://doi.org/10.1007/s10899-024-10358-8

Contreras, L. M. V., Cid, F. M., Ferro, E. F., Tobar, B. U., Herraz, C. C., Cardenas, R. G., Leon, C. R., & Vil-lacura, A. V. (2024). Autoestima y hábitos de vida saludable en estudiantes universitarios del área de la salud y pedagogía de una Universidad de Santiago de Chile (Self-esteem and healthy lifestyle habits in university students in the area of health and pedagogy at a University in San-tiago de Chile). Retos, 60, 666-671. https://doi.org/10.47197/retos.v60.106162

Cummins, K., & Lu, Y. (2022). Adolescents’ Perceptions of Substance Use Harms are Contingent on Mode of Administration and Type of Substance. Substance Abuse: Research and Treatment, 16, 11782218221119584. https://doi.org/10.1177/11782218221119584

Delcea, C., Nica, I., Ionescu, Ștefan, Cibu, B., & Țibrea, H. (2024). Mapping the Frontier: A Bibliometric Analysis of Artificial Intelligence Applications in Local and Regional Studies. Algorithms, 17(9), Article 9. https://doi.org/10.3390/a17090418

Di Franco, G., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & Quantity, 55(3), 1007-1025.

Diler, R. S., Merranko, J. A., Hafeman, D., Goldstein, T. R., Goldstein, B. I., Hower, H., Gill, M. K., Axelson, D. A., Ryan, N., Strober, M., Keller, M. B., Yen, S., Hunt, J. I., Weinstock, L. M., Iyengar, S., & Bir-maher, B. B. (2022). Higher socioeconomic status and less parental psychopathology improve prognosis in youths with bipolar disorder. Journal of Affective Disorders, 302, 185-193. https://doi.org/10.1016/j.jad.2022.01.058

Drost, E. A. (2011). Validity and Reliability in Social Science Research. Education Research and Per-spectives, 38(1), 105–123.

Duggan, B., & Mohan, G. (2023). A Longitudinal Examination of Young People’s Gambling Behaviours and Participation in Team Sports. Journal of Gambling Studies, 39(2), 541-557. https://doi.org/10.1007/s10899-022-10175-x

Fagan, M. J., Duncan, M. J., Bedi, R. P., Puterman, E., Leatherdale, S. T., & Faulkner, G. (2022). Physical activity and substance use among Canadian adolescents: Examining the moderating role of school connectedness. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.889987

Ganson, K. T., Rodgers, R. F., Murray, S. B., & Nagata, J. M. (2022). Associations between muscle-building exercise and concurrent e-cigarette, cigarette, and cannabis use among U.S. adoles-cents. PLOS ONE, 17(12), e0278903. https://doi.org/10.1371/journal.pone.0278903

Gerra, G., Benedetti, E., Resce, G., Potente, R., Cutilli, A., & Molinaro, S. (2020). Socioeconomic Status, Parental Education, School Connectedness and Individual Socio-Cultural Resources in Vulnera-bility for Drug Use among Students. International Journal of Environmental Research and Pub-lic Health, 17(4), Article 4. https://doi.org/10.3390/ijerph17041306

Gil-Vera, V. D., Quintero-López, C., Gil-Vera, V. D., & Quintero-López, C. (2021). Predicción del rendi-miento académico estudiantil con redes neuronales artificiales. Información tecnológica, 32(6), 221-228. https://doi.org/10.4067/S0718-07642021000600221

Hammond, M. A., Khurana, A., & Stormshak, E. A. (2021). Adolescent measures of family socioeconom-ic status: Reliability, validity, and effects on substance use behaviors in adolescence and young adulthood. Preventive Medicine Reports, 21, 101317. https://doi.org/10.1016/j.pmedr.2021.101317

Hu, Y. H., & Hwang, J. N. (Eds.). (2018). Handbook of neural network signal processing. CRC Press.

Hutchison, M., & Russell, B. S. (2021). Community Coalition Efforts to Prevent Adolescent Substance Use: A Systematic Review. Journal of Drug Education, 50(1-2), 3-30. https://doi.org/10.1177/00472379211016384

Jang, H., & Kim, J. (2023). Peers’ parental education and cardiovascular disease risk in adulthood: The mediating role of health-related behaviors. Social Science & Medicine, 320, 115673. https://doi.org/10.1016/j.socscimed.2023.115673

Kılıç, S. (2016). Cronbach’s alpha reliability coefficient. Journal of Mood Disorders, 6 (1), 47. https://doi.org/10.5455/jmood.20160307122823

Klamert, L., Craike, M., Bedi, G., Kidd, S., Pascoe, M. C., & Parker, A. G. (2023). Behaviour change tech-niques in physical activity-focused interventions for young people at risk of problematic sub-stance use: A systematic review and meta-analysis. Early Intervention in Psychiatry, 17(12), 1139-1153. https://doi.org/10.1111/eip.13467

Lin, J., & Guo, W. (2024). The Research on Risk Factors for Adolescents’ Mental Health. Behavioral Sciences, 14(4), 263. https://doi.org/10.3390/bs14040263

López-Del-Hoyo, Y., Monreal-Bartolomé, A., Aisa, P., Pérez-Aranda, A., Plana, C., Poblador, J. A., Caste-rad, J., García-Campayo, J., & Montero-Marin, J. (2022). The Gambling Habits of University Stu-dents in Aragon, Spain: A Cross-Sectional Study. International journal of environmental re-search and public health, 19(8), 4553. https://doi.org/10.3390/ijerph19084553

Lozza, E., Jarach, C. M., Sesini, G., Marta, E., Lugo, A., Santoro, E., Gallus, S., HBSC Lombardy Committee 2018, & members of the HBSC Lombardy Committee 2018. (2023). Should I give kids money? The role of pocket money on at-risk behaviors in Italian adolescents. Annali Dell’Istituto Supe-riore Di Sanita, 59(1), 37-42. https://doi.org/10.4415/ANN_23_01_06

Mariani, A. C., & Williams, A. R. (2021). Perceived risk of harm from monthly cannabis use among US adolescents: National Survey on drug Use and Health, 2017. Preventive Medicine Reports, 23, 101436. https://doi.org/10.1016/j.pmedr.2021.101436

Ministerio de Sanidad. (2022). Informe 2022. Alcohol, tabaco y drogas ilegales en España. Ministerio de Sanidad.

Ministerio de Sanidad. (2024). EDADES. Encuesta sobre Alcohol y Drogas en España.

Ministerio de Sanidad. (2024). Informe sobre Adicciones Comportamentales y Otros Trastornos Adicti-vos 2024: Indicador admitidos a tratamiento por adicciones comportamentales. Juego de azar, uso de videojuegos, uso problemático de internet y otros trastornos adictivos en las encuestas de drogas en España EDADES y ESTUDES.

Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379-425). Cham: Springer International Publishing.

Montgomery, L., Vaughn, L. M., & Jacquez, F. (2022). Engaging Adolescents in the Fight Against Drug Abuse and Addiction: A Concept Mapping Approach. Health Education & Behavior, 49(2), 272-280. https://doi.org/10.1177/10901981211068416

Motyka, M. A., & Al-Imam, A. (2022). Causes of Drug Initiation among Adolescents. Canadian Journal of Family And Youth, 14(1), 63-81.

Namdeo, S. K., & Rout, S. D. (2017). Calculating and interpreting Cronbach’s alpha using Rosenberg assessment scale on paediatrician’s attitude and perception on self esteem. International Jour-nal Of Community Medicine And Public Health, 3(6), 1371–1374. https://doi.org/10.18203/2394-6040.ijcmph20161448

Nawi, A. M., Ismail, R., Ibrahim, F., Hassan, M. R., Manaf, M. R. A., Amit, N., Ibrahim, N., & Shafurdin, N. S. (2021). Risk and protective factors of drug abuse among adolescents: A systematic review. BMC Public Health, 21(1), 2088. https://doi.org/10.1186/s12889-021-11906-2

Organización Mundial de la Salud. (2023). World Drug Report 2023.

Pérez-Albéniz, A., Gil, M., Díez-Gómez, A., Martín-Seoane, G., & Lucas-Molina, B. (2021). Gambling in Spanish Adolescents: Prevalence and Association with Mental Health Indicators. International journal of environmental research and public health, 19(1), 129. https://doi.org/10.3390/ijerph19010129

Priddy, K.L. & Keller, P.E. (2005). Artificial Neural Networks: An Introduction. Spie Digital Library. https://doi.org/10.1117/3.633187

Rodríguez-Ruiz, J., Zych, I., Llorent, V. J., Marín-López, I., Espejo-Siles, R., & Nasaescu, E. (2023). A lon-gitudinal study of protective factors against substance use in early adolescence. An ecological approach. International Journal of Drug Policy, 112, 103946. https://doi.org/10.1016/j.drugpo.2022.103946

Song, L., Huang, Z., Yang, S., Bu, D., Yi, N., & Zheng, X. (2024). Effectiveness of short-term exercise on drug rehabilitation effect for drug abusers: A systematic review and meta-analysis. Interna-tional Journal of Sport and Exercise Psychology, 22(9), 2111-2136. https://doi.org/10.1080/1612197X.2023.2264298

Steinberg, L. (2022). Adolescence (13th edition). McGraw-Hill Higher Education.

Sugimura, K., Hihara, S., Hatano, K., Nakama, R., Saiga, S., & Tsuzuki, M. (2023). Profiles of Emotional Separation and Parental Trust from Adolescence to Emerging Adulthood: Age Differences and Associations with Identity and Life Satisfaction. Journal of Youth and Adolescence, 52(3), 475-489. https://doi.org/10.1007/s10964-022-01716-z

Sun, S. (2025). Racial/Ethnic Heterogeneity in Parental Wealth and Substance Use from Adolescence to Young Adulthood. Journal of Racial and Ethnic Health Disparities, 12(1), 531-542. https://doi.org/10.1007/s40615-023-01893-y

Thompson, T. P., Horrell, J., Taylor, A. H., Wanner, A., Husk, K., Wei, Y., Creanor, S., Kandiyali, R., Neale, J., Sinclair, J., Nasser, M., & Wallace, G. (2020). Physical activity and the prevention, reduction, and treatment of alcohol and other drug use across the lifespan (The PHASE review): A sys-tematic review. Mental Health and Physical Activity, 19, 100360. https://doi.org/10.1016/j.mhpa.2020.100360

Wingerter, D. G., Santos, E. G. de O., & Barbosa, I. R. (2020). Uso de redes neurais artificiais para classi-ficação de municípios quanto à vulnerabilidade social no Estado do Rio Grande do Norte, Bra-sil. Cadernos de Saúde Pública, 36, e00038319. https://doi.org/10.1590/0102-311X00038319

Zhang, S., Wu, S., Wu, Q., Durkin, D. W., & Marsiglia, F. F. (2021). Adolescent drug use initiation and transition into other drugs: A retrospective longitudinal examination across race/ethnicity. Addictive Behaviors, 113, 106679. https://doi.org/10.1016/j.addbeh.2020.106679

Downloads

Published

09/04/2025

Issue

Section

Original Research Article

How to Cite

Armenteros Mayoral, J. C., Rodríguez-Sabiote, C., Michelle Vázquez, L., & Álvarez-Ferrándiz, D. (2025). Predicting drug use and gambling in young athletes using an ANN model. Retos, 72, 90-104. https://doi.org/10.47197/retos.v72.116535