Predicting drug use and gambling in young athletes using an ANN model
DOI:
https://doi.org/10.47197/retos.v72.116535Keywords:
Drugs, Substance use, Artificial Neuronal Network, Young, SportAbstract
Introduction: adolescence is established as the critical stage for the onset of consumption of addictive substances. The aim of this study is to identify the pattern of lifetime consumption of the main drugs at this stage, analysing various socio-contextual variables.
Objective: identify the level of drug and gambling consumption in life by means of socio-demographic variables.
Methodology: this study uses ex post facto correlational-predictive design with 256 football and futsal players from the capital of Jaén. Information was obtained on the following socio-demographic variables: father's and mother's employment status, father's and mother's academic level, family economic level and weekly money spent on leisure.
Results: the construction of the ANN model showed an overall correct percentage in training of 83.4% and in the test of 77.6%. The most important predictors of lifetime use of alcohol, tobacco, cannabis and gambling are weekly leisure money (100%) and family finances (57.2%), while the least important predictor is the mother's employment status (23%). The ROC levels show moderate-good values, highlighting the prediction of consumption values above 39 days with a mean of around 0.872.
Conclussion: lifetime use of the addictive substances analysed cannot be approached in a linear fashion. It is necessary to know the socio-demographic factors of the adolescents and the interaction between them to be able to identify possible risk subjects.
References
Alatawi, K. K. Z., Albalawi, K. S. D., Aljuhani, A. A. M., Albalawi, N. S. D., Alalawy, A. I., & Oyouni, A. A. A. (2022). Drug detection tests and the important factors and effects of the development of addic-tion. Journal of King Saud University - Science, 34(5), 102093. https://doi.org/10.1016/j.jksus.2022.102093
Alejandro, M. H. (2011). Consumo dealcohol y drogas en adolescentes. Revista Médica Clínica Las Con-des, 22(1), 98-109. https://doi.org/ 10.1016/S0716-8640(11)70397-2
Aschengrau, A., Grippo, A., & Winter, M. R. (2021). Influence of Family and Community Socioeconomic Status on the Risk of Adolescent Drug Use. Substance Use & Misuse, 56(5), 577-587. https://doi.org/10.1080/10826084.2021.1883660
Asensio-Hernández, M., & Jiménez-Martín, P.-J. (2022). Evaluación de la calidad del diseño de los pro-gramas de prevención de drogodependencias de la Red Aragonesa de Escuelas Promotoras de la Salud que incluyen actividad físico-deportiva como recurso de intervención 2010-2016. Ágo-ra para la Educación Física y el Deporte, 24, Article 24. https://doi.org/10.24197/aefd.24.2022.117-139
Bronfenbrenner, U. (1987). La ecología del desarrollo humano: Experimentos en entornos naturales y diseñados. https://dialnet.unirioja.es/servlet/libro?codigo=53045
Carbonneau, R., Vitaro, F., Brendgen, M., Boivin, M., Côté, S. M., & Tremblay, R. E. (2024). Differential Association of Preadolescent Risk Factors Across Developmental Patterns of Adolescent Con-current Gambling Participation and Substance Use. Journal of Gambling Studies, 40(4), 1965-1985. https://doi.org/10.1007/s10899-024-10358-8
Contreras, L. M. V., Cid, F. M., Ferro, E. F., Tobar, B. U., Herraz, C. C., Cardenas, R. G., Leon, C. R., & Vil-lacura, A. V. (2024). Autoestima y hábitos de vida saludable en estudiantes universitarios del área de la salud y pedagogía de una Universidad de Santiago de Chile (Self-esteem and healthy lifestyle habits in university students in the area of health and pedagogy at a University in San-tiago de Chile). Retos, 60, 666-671. https://doi.org/10.47197/retos.v60.106162
Cummins, K., & Lu, Y. (2022). Adolescents’ Perceptions of Substance Use Harms are Contingent on Mode of Administration and Type of Substance. Substance Abuse: Research and Treatment, 16, 11782218221119584. https://doi.org/10.1177/11782218221119584
Delcea, C., Nica, I., Ionescu, Ștefan, Cibu, B., & Țibrea, H. (2024). Mapping the Frontier: A Bibliometric Analysis of Artificial Intelligence Applications in Local and Regional Studies. Algorithms, 17(9), Article 9. https://doi.org/10.3390/a17090418
Di Franco, G., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & Quantity, 55(3), 1007-1025.
Diler, R. S., Merranko, J. A., Hafeman, D., Goldstein, T. R., Goldstein, B. I., Hower, H., Gill, M. K., Axelson, D. A., Ryan, N., Strober, M., Keller, M. B., Yen, S., Hunt, J. I., Weinstock, L. M., Iyengar, S., & Bir-maher, B. B. (2022). Higher socioeconomic status and less parental psychopathology improve prognosis in youths with bipolar disorder. Journal of Affective Disorders, 302, 185-193. https://doi.org/10.1016/j.jad.2022.01.058
Drost, E. A. (2011). Validity and Reliability in Social Science Research. Education Research and Per-spectives, 38(1), 105–123.
Duggan, B., & Mohan, G. (2023). A Longitudinal Examination of Young People’s Gambling Behaviours and Participation in Team Sports. Journal of Gambling Studies, 39(2), 541-557. https://doi.org/10.1007/s10899-022-10175-x
Fagan, M. J., Duncan, M. J., Bedi, R. P., Puterman, E., Leatherdale, S. T., & Faulkner, G. (2022). Physical activity and substance use among Canadian adolescents: Examining the moderating role of school connectedness. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.889987
Ganson, K. T., Rodgers, R. F., Murray, S. B., & Nagata, J. M. (2022). Associations between muscle-building exercise and concurrent e-cigarette, cigarette, and cannabis use among U.S. adoles-cents. PLOS ONE, 17(12), e0278903. https://doi.org/10.1371/journal.pone.0278903
Gerra, G., Benedetti, E., Resce, G., Potente, R., Cutilli, A., & Molinaro, S. (2020). Socioeconomic Status, Parental Education, School Connectedness and Individual Socio-Cultural Resources in Vulnera-bility for Drug Use among Students. International Journal of Environmental Research and Pub-lic Health, 17(4), Article 4. https://doi.org/10.3390/ijerph17041306
Gil-Vera, V. D., Quintero-López, C., Gil-Vera, V. D., & Quintero-López, C. (2021). Predicción del rendi-miento académico estudiantil con redes neuronales artificiales. Información tecnológica, 32(6), 221-228. https://doi.org/10.4067/S0718-07642021000600221
Hammond, M. A., Khurana, A., & Stormshak, E. A. (2021). Adolescent measures of family socioeconom-ic status: Reliability, validity, and effects on substance use behaviors in adolescence and young adulthood. Preventive Medicine Reports, 21, 101317. https://doi.org/10.1016/j.pmedr.2021.101317
Hu, Y. H., & Hwang, J. N. (Eds.). (2018). Handbook of neural network signal processing. CRC Press.
Hutchison, M., & Russell, B. S. (2021). Community Coalition Efforts to Prevent Adolescent Substance Use: A Systematic Review. Journal of Drug Education, 50(1-2), 3-30. https://doi.org/10.1177/00472379211016384
Jang, H., & Kim, J. (2023). Peers’ parental education and cardiovascular disease risk in adulthood: The mediating role of health-related behaviors. Social Science & Medicine, 320, 115673. https://doi.org/10.1016/j.socscimed.2023.115673
Kılıç, S. (2016). Cronbach’s alpha reliability coefficient. Journal of Mood Disorders, 6 (1), 47. https://doi.org/10.5455/jmood.20160307122823
Klamert, L., Craike, M., Bedi, G., Kidd, S., Pascoe, M. C., & Parker, A. G. (2023). Behaviour change tech-niques in physical activity-focused interventions for young people at risk of problematic sub-stance use: A systematic review and meta-analysis. Early Intervention in Psychiatry, 17(12), 1139-1153. https://doi.org/10.1111/eip.13467
Lin, J., & Guo, W. (2024). The Research on Risk Factors for Adolescents’ Mental Health. Behavioral Sciences, 14(4), 263. https://doi.org/10.3390/bs14040263
López-Del-Hoyo, Y., Monreal-Bartolomé, A., Aisa, P., Pérez-Aranda, A., Plana, C., Poblador, J. A., Caste-rad, J., García-Campayo, J., & Montero-Marin, J. (2022). The Gambling Habits of University Stu-dents in Aragon, Spain: A Cross-Sectional Study. International journal of environmental re-search and public health, 19(8), 4553. https://doi.org/10.3390/ijerph19084553
Lozza, E., Jarach, C. M., Sesini, G., Marta, E., Lugo, A., Santoro, E., Gallus, S., HBSC Lombardy Committee 2018, & members of the HBSC Lombardy Committee 2018. (2023). Should I give kids money? The role of pocket money on at-risk behaviors in Italian adolescents. Annali Dell’Istituto Supe-riore Di Sanita, 59(1), 37-42. https://doi.org/10.4415/ANN_23_01_06
Mariani, A. C., & Williams, A. R. (2021). Perceived risk of harm from monthly cannabis use among US adolescents: National Survey on drug Use and Health, 2017. Preventive Medicine Reports, 23, 101436. https://doi.org/10.1016/j.pmedr.2021.101436
Ministerio de Sanidad. (2022). Informe 2022. Alcohol, tabaco y drogas ilegales en España. Ministerio de Sanidad.
Ministerio de Sanidad. (2024). EDADES. Encuesta sobre Alcohol y Drogas en España.
Ministerio de Sanidad. (2024). Informe sobre Adicciones Comportamentales y Otros Trastornos Adicti-vos 2024: Indicador admitidos a tratamiento por adicciones comportamentales. Juego de azar, uso de videojuegos, uso problemático de internet y otros trastornos adictivos en las encuestas de drogas en España EDADES y ESTUDES.
Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379-425). Cham: Springer International Publishing.
Montgomery, L., Vaughn, L. M., & Jacquez, F. (2022). Engaging Adolescents in the Fight Against Drug Abuse and Addiction: A Concept Mapping Approach. Health Education & Behavior, 49(2), 272-280. https://doi.org/10.1177/10901981211068416
Motyka, M. A., & Al-Imam, A. (2022). Causes of Drug Initiation among Adolescents. Canadian Journal of Family And Youth, 14(1), 63-81.
Namdeo, S. K., & Rout, S. D. (2017). Calculating and interpreting Cronbach’s alpha using Rosenberg assessment scale on paediatrician’s attitude and perception on self esteem. International Jour-nal Of Community Medicine And Public Health, 3(6), 1371–1374. https://doi.org/10.18203/2394-6040.ijcmph20161448
Nawi, A. M., Ismail, R., Ibrahim, F., Hassan, M. R., Manaf, M. R. A., Amit, N., Ibrahim, N., & Shafurdin, N. S. (2021). Risk and protective factors of drug abuse among adolescents: A systematic review. BMC Public Health, 21(1), 2088. https://doi.org/10.1186/s12889-021-11906-2
Organización Mundial de la Salud. (2023). World Drug Report 2023.
Pérez-Albéniz, A., Gil, M., Díez-Gómez, A., Martín-Seoane, G., & Lucas-Molina, B. (2021). Gambling in Spanish Adolescents: Prevalence and Association with Mental Health Indicators. International journal of environmental research and public health, 19(1), 129. https://doi.org/10.3390/ijerph19010129
Priddy, K.L. & Keller, P.E. (2005). Artificial Neural Networks: An Introduction. Spie Digital Library. https://doi.org/10.1117/3.633187
Rodríguez-Ruiz, J., Zych, I., Llorent, V. J., Marín-López, I., Espejo-Siles, R., & Nasaescu, E. (2023). A lon-gitudinal study of protective factors against substance use in early adolescence. An ecological approach. International Journal of Drug Policy, 112, 103946. https://doi.org/10.1016/j.drugpo.2022.103946
Song, L., Huang, Z., Yang, S., Bu, D., Yi, N., & Zheng, X. (2024). Effectiveness of short-term exercise on drug rehabilitation effect for drug abusers: A systematic review and meta-analysis. Interna-tional Journal of Sport and Exercise Psychology, 22(9), 2111-2136. https://doi.org/10.1080/1612197X.2023.2264298
Steinberg, L. (2022). Adolescence (13th edition). McGraw-Hill Higher Education.
Sugimura, K., Hihara, S., Hatano, K., Nakama, R., Saiga, S., & Tsuzuki, M. (2023). Profiles of Emotional Separation and Parental Trust from Adolescence to Emerging Adulthood: Age Differences and Associations with Identity and Life Satisfaction. Journal of Youth and Adolescence, 52(3), 475-489. https://doi.org/10.1007/s10964-022-01716-z
Sun, S. (2025). Racial/Ethnic Heterogeneity in Parental Wealth and Substance Use from Adolescence to Young Adulthood. Journal of Racial and Ethnic Health Disparities, 12(1), 531-542. https://doi.org/10.1007/s40615-023-01893-y
Thompson, T. P., Horrell, J., Taylor, A. H., Wanner, A., Husk, K., Wei, Y., Creanor, S., Kandiyali, R., Neale, J., Sinclair, J., Nasser, M., & Wallace, G. (2020). Physical activity and the prevention, reduction, and treatment of alcohol and other drug use across the lifespan (The PHASE review): A sys-tematic review. Mental Health and Physical Activity, 19, 100360. https://doi.org/10.1016/j.mhpa.2020.100360
Wingerter, D. G., Santos, E. G. de O., & Barbosa, I. R. (2020). Uso de redes neurais artificiais para classi-ficação de municípios quanto à vulnerabilidade social no Estado do Rio Grande do Norte, Bra-sil. Cadernos de Saúde Pública, 36, e00038319. https://doi.org/10.1590/0102-311X00038319
Zhang, S., Wu, S., Wu, Q., Durkin, D. W., & Marsiglia, F. F. (2021). Adolescent drug use initiation and transition into other drugs: A retrospective longitudinal examination across race/ethnicity. Addictive Behaviors, 113, 106679. https://doi.org/10.1016/j.addbeh.2020.106679
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan Carlos Armenteros Mayoral, Clemente Rodríguez-Sabiote, Lindsay Michelle Vázquez, Daniel Álvarez-Ferrándiz

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.