Improving the quality of Physical Education: a teaching behaviour-based study protocol using artificial intelligence

Authors

  • Evelia Franco Universidad Loyola Andalucía
  • Daniel Gutiérrez-Reina Universidad de Sevilla
  • Alba González-Peño Universidad Politécnica de Madrid
  • Javier Coterón Universidad Politécnica de Madrid https://orcid.org/0000-0002-1662-7401

DOI:

https://doi.org/10.47197/retos.v72.116921

Keywords:

circumplex approach, motivation, natural language processing, teaching behaviours, supervised machine learning

Abstract

Introduction: Over the last few decades, the analysis of quality in the physical education (PE) context has received remarkable attention, self-determination theory being one of the most successful theoretical perspectives in explaining teacher-student interactions. The aim is to present an artificial intelligence-based study protocol to automatise the identification of teaching behaviours, enhancing educational research oriented to improving PE quality.

Method: Eight different teaching behaviours are classified using natural language processing techniques. A data set is generated containing transcriptions of voice recordings from numerous PE lesson extracts, coded by PE experts. These data are used to train different machine learning algorithms so that teaching behaviours can be automatically identified and labelled.

Results: Algorithms tested will be assessed through different metrics such as accuracy, precision, recall, and F1-score for each teaching behaviour to be predicted. The findings are believed to provide a promising tool to improve educational research, which will, in turn, favour the quality of PE teaching behaviours.

Discussion: The analysis of teaching behaviours and students’ outcomes has traditionally relied on self-reported questionnaires and external observation. While valid, these practices are highly time- and resource-consuming, acting as a barrier to sustaining certain projects aimed at improving educational practices. This study protocol seeks to overcome such limitations.

References

Aelterman, N., Vansteenkiste, M., Haerens, L., Soenens, B., Fontaine, J. R. J., & Reeve, J. (2019). Toward an integrative and fine-grained insight in motivating and demotivating teaching styles: The merits of a circumplex approach. Journal of Educational Psychology, 111(3), 497-521. https://doi.org/10.1037/edu0000293

Ahmadi, A., Noetel, M., Parker, P. D., Ryan, R. M., Ntoumanis, N., Reeve, J., Beauchamp, M. R., Dicke, T., Yeung, A., Ahmadi, M., Bartholomew, K. J., Chiu, T. K. F., Curran, T., Erturan, G., Flunger, B., Frederick, C. M., Froiland, J. M., González-Cutre, D., Haerens, L., Jeno, L. M., Koka, A., Krijgsman, C., Langdon, J. L., White, R. L., Litalien, D., Lubans, D. R., Mahoney, J. W., Nalipay, M. J., Patall, E., Perlman, D., Quested, E., Schneider, S., Standage, M., Stroet, K., Tessier, D., Thogersen-Ntoumani, C., Tilga, H., Vasconcellos, D., & Londsdale, C. (2023). A Classification System for Teachers’ Motivational Behaviours Recommended in Self-Determination Theory Interventions. Journal of Educational Psychology, 115(8), 1158-1176. https://doi.org/10.1037/edu0000783

American Psychological Association. (2002). Ethical principles of psychologists and code of conduct (Amended August 3, 2016). American Psychological Association.

Barber, M., & Mourshed, M. (2007). Cómo hicieron los sistemas educativos con mejor desempeño del mundo para alcanzar sus objetivos. McKinsey & Company.

Burgueño, R., Abós, A., Sevil-Serrano, J., Haerens, L., De Cocker, K., & García-González, L. (2023). A Circumplex Approach to (de)motivating Styles in Physical Education: Situations-In-School–Physical Education Questionnaire in Spanish Students, Pre-Service, and In-Service Teachers. Measurement in Physical Education and Exercise Science, 28(1), 86-108. https://doi.org/10.1080/1091367X.2023.2248098

Cádiz Chacón, P., Barrio Mateu, L. A., León Valladares, D., Hernández Sánchez, Álvaro, Milla Palma, M., & Sotomayor Fernández, M. (2021). Motivación contextual desde la autodeterminación en las clases de Educación Física. Retos, 41, 88–94. https://doi.org/10.47197/retos.v0i41.80998

Chen, B., Vansteenkiste, M., Beyers, W., Boone, L., Deci, E. L., Van der Kaap-Deeder, J., Duriez, B., Lens, W., Matos, L., Mouratidis, A., Ryan, R. M., Sheldon, K. M., Soenens, B., Van Petegem, S., & Verstuyf, J. (2015). Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motivation and emotion, 39(2), 216-236. https://doi.org/10.1007/s11031-014-9450-1

Cheon, S. H., Reeve, J., & Marsh, H. W. (2023). Autonomy-Supportive Teaching Enhances Prosocial and Reduces Antisocial Behavior via Classroom Climate and Psychological Needs: A Multilevel Randomized Control Intervention. Journal of Sport & Exercise Psychology, 45(1), 26-40. https://doi.org/10.1123/jsep.2021-0337

Claudino, J. G., Capanema, D. d. O., de Souza, T. V., Serrão, J. C., Machado Pereira, A. C., & Nassis, G. P. J. S. m.-o. (2019). Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: a systematic review. Sports Medicine - Open, 5(1), 1-12. https://doi.org/10.1186/s40798-019-0202-3

Comisión Europea. (2017). Modernisation of Higher Education in Europe: Academic Staff - 2017. Eurydice Report. .

Cudney, E. A., Anderson, S., Beane, R., Furterer, S., Mohandas, L., & Laux, C. (2023). Using the voice of the student to identify perceptions of teaching effectiveness attributes: a pilot study. Quality Assurance in Education, 31(3), 485-503. https://doi.org/10.1108/QAE-10-2022-0187

de Schipper, E., Feskens, R., & Keuning, J. (2021). Personalized and Automated Feedback in Summative Assessment Using Recommender Systems [Original Research]. 6. https://doi.org/10.3389/feduc.2021.652070

Dudley, D., Mackenzie, E., Van Bergen, P., Cairney, J., & Barnett, L. (2022). What Drives Quality Physical Education? A Systematic Review and Meta-Analysis of Learning and Development Effects From Physical Education-Based Interventions [Systematic Review]. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.799330

Ferguson, T., Olds, T., Curtis, R., Blake, H., Crozier, A. J., Dankiw, K., Dumuid, D., Kasai, D., O'Connor, E., Virgara, R., & Maher, C. (2022). Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. The Lancet Digital Health, 4(8), e615-e626. https://doi.org/10.1016/S2589-7500(22)00111-X

Finegan, E. (2011). Language. Its Structure and Use. Wadsworth.

Franco, E., Coterón, J., Gómez, V., & Spray, C. M. (2021). A person-centred approach to understanding dark-side antecedents and students’ outcomes associated with physical education teachers’ motivation. Psychology of Sport and Exercise, 57, 102021. https://doi.org/10.1016/j.psychsport.2021.102021

Gao, Z., Chen, S., Sun, H. C., Wen, X., & Xiang, P. (2018). Physical Activity in Children's Health and Condition. BioMed Research International, 2018. https://doi.org/10.1155/2018/8542403

Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. The Lancet Child & Adolescent Health, 4(1), 23-35. https://doi.org/10.1016/S2352-4642(19)30323-2

Hassan, S. U., Ahamed, J., & Ahmad, K. (2022). Analytics of machine learning-based algorithms for text classification. Sustainable Operations and Computers, 3, 238-248. https://doi.org/https://doi.org/10.1016/j.susoc.2022.03.001

Hein, V., Müür, M., & Koka, A. (2004). Intention to be physically active after school graduation and its relationship to three types of intrinsic motivation. European Physical Education Review, 10(1), 5-19. https://doi.org/10.1177/1356336X04040618

Hill, Y., Lomas, L., & MacGregor, J. (2003). Students’ perceptions of quality in higher education. Quality Assurance in Education, 11(1), 15-20. https://doi.org/10.1108/09684880310462047

Jatnika, D., Bijaksana, M. A., & Suryani, A. A. (2019). Word2Vec Model Analysis for Semantic Similarities in English Words. Procedia Computer Science, 157, 160-167. https://doi.org/https://doi.org/10.1016/j.procs.2019.08.153

Jiang, H., Lu, Y., & Xue, J. (2016). Automatic soccer video event detection based on a deep neural network combined cnn and rnn. 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI).

Lamoneda Prieto, J., Matos Duarte, M., Palacio, E. S., & Fraile, J. (2024). Impacto de un programa de intervención basado en la teoría de la autodeterminación sobre las necesidades psicológicas básicas, la intención de ser físicamente activo y la satisfacción con la vida de estudiantes de secundaria: Estudio longitudinal. Retos, 56, 228–237. https://doi.org/10.47197/retos.v56.103825

Larson, R. B. (2019). Controlling social desirability bias. International Journal of Market Research, 61(5), 534-547. https://doi.org/10.1177/1470785318805305

Leão Pereira, A. F., & Lorente-Catalán, E. (2024). Educación Física de Calidad: Diseño y validación de una herramienta orientada a la reflexión e innovación en los procesos educativos. Retos, 51, 32–46. https://doi.org/10.47197/retos.v51.99745

Mamani-Ramos, A. A., Damian-Nuñez, E. F., Carpio-Vargas, E. E., Mujica-Bermúdez, I., Pérez-Reátegui, C. M., Botton-Estrada, L. M., Quisocala-Ramos, J. A., Quispe-Cruz, H., Cutimbo-Quispe, C. V., Rodriguez- Mamani, J. R., Palomino-Crisóstomo, R. P., Cutipa-Salluca, W. R., Tuero-Chirinos, K. F., Villanueva-Alvaro, N. S., & Lava- Gálvez, J. J. (2025). Principales variables que predicen la competencia motora: análisis con árboles de clasificación. Retos, 68, 318–330. https://doi.org/10.47197/retos.v68.113 239

Moreno, J. A., Moreno, R., & Cervelló, E. (2007). El autoconcepto físico como predictor de la intención de ser físicamente activo. Psicología y Salud, 17(2), 261-267. https://doi.org/10.25009/pys.v17i2.710

Mourshed, M., Chijioke, C., & Barber, M. (2012). Cómo continúan mejorando los sistemas educativos de mayor progreso en el mundo. McKinsey & Company.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vector for word representation.

Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579-595. https://doi.org/10.1037/a0032690

Reyes-Rodríguez, A. D., Retamal, F., Ho, W., & López de D’Amico, R. (2025). Percepción de la calidad de la Educación Física en República Dominicana. Retos, 64, 416–430. https://doi.org/10.47197/retos.v64.110570

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/https://doi.org/10.1006/ceps.1999.1020

Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., & Fischer, F. (2023). Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning. Learning and Instruction, 83, 101620. https://doi.org/10.1016/j.learninstruc.2022.101620

Santos, I., Nedjah, N., & Mourelle, L. M. (2017). Sentiment analysis using convolutional neural network with fastText embeddings. 2017 IEEE Latin American Conference on Computational Intelligence,

Shen, B., McCaughtry, N., Martin, J., Fahlman, M., & Garn, A. (2012). Urban high-school girls' sense of relatedness and their engagement in Physical Education. Journal of Teaching in Physical Education, 31, 231-245. https://doi.org/10.1123/jtpe.31.3.231

Simón-Chico, L., González-Peño, A., Hernández-Cuadrado, E., & Franco, E. (2023). The Impact of a Challenge-Based Learning Experience in Physical Education on Studens' Motivation and Engagement. European Journal of Investigation in Health, Psychology and Education, 13(4), 684-700.

Tilga, H., Kalajas-Tilga, H., Hein, V., Raudsepp, L., & Koka, A. (2021). Perceived autonomy support from peers, parents, and physical education teachers as predictors of physical activity and health-related quality of life among adolescents—a one-year longitudinal study. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090457

Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 21(1).

UNESCO. (2015). Educación física de calidad: guía para los responsables políticos.

Van Doren, N., De Cocker, K., Flamant, N., Compernolle, S., Vanderlinde, R., & Haerens, L. (2023). Observing physical education teachers’ need-supportive and need-thwarting styles using a circumplex approach: how does it relate to student outcomes? Physical Education and Sport Pedagogy, 1-25. https://doi.org/10.1080/17408989.2023.2230256

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. 31st Conference on Neural Information Processing Systems.,

Zamarripa, J., Rodríguez-Medellín, R., Pérez-Garcia, J. A., Otero-Saborido, F., & Delgado, M. (2020). Mexican Basic Psychological Need Satisfaction and Frustration Scale in Physical Education. Frontiers in Psychology, 11(253). https://doi.org/10.3389/fpsyg.2020.00253

Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical framework. International Journal of Machine Learning and Cybernetics, 1(1), 43-52. https://doi.org/10.1007/s13042-010-0001-0

Downloads

Published

17-09-2025

Issue

Section

Original Research Article

How to Cite

Franco, E., Gutiérrez-Reina, D., González-Peño, A., & Coterón, J. (2025). Improving the quality of Physical Education: a teaching behaviour-based study protocol using artificial intelligence. Retos, 72, 715-727. https://doi.org/10.47197/retos.v72.116921