Design and validation of an artificial intelligence-mediated evaluation model for Physical Education

Authors

  • Juan Carlos Vasco Delgado Universidad de Guayaquil https://orcid.org/0000-0003-0587-9758
  • Betty Azucena Macas Padilla Universidad de Guayaquil
  • Luis Aníbal Vasco Delgado Universidad de Guayaquil
  • Leonardo Jesús Vasco Delgado Universidad de Guayaquil

DOI:

https://doi.org/10.47197/retos.v70.116530

Keywords:

Academic performance, Artificial intelligence, Automated evaluation, Educational model, Physical education assessment

Abstract

Introduction and Objective. The development of technological tools for assessment in physical education has gained increasing interest, especially in higher education contexts that require accuracy and objectivity in measuring student performance. The objective of this research was to design, implement, and empirically validate an automated assessment model, mediated by artificial intelligence, applied to university students in the Physical Activity and Sports Pedagogy program at the University of Guayaquil.

Methodology. Validation was conducted using a quantitative design, through internal reliability analysis, comparison of means, and variance tests.

Results. The results showed significant improvements in academic performance, as well as high acceptance of the proposed model. The tool demonstrated reliability in measurement and reduced bias in the assessment process. The findings are consistent with previous research that proposes the integration of emerging technologies in physical education to promote more objective assessments adapted to student diversity.

Conclusions. It is concluded that the automated model represents a step forward in the modernization of assessment in physical education, and its implementation in other populations with adequate pedagogical support is recommended.

References

Anijovich, R., & Cappelletti, G. (2020). La retroalimentación formativa: Una oportunidad para mejorar los aprendizajes y la enseñanza. Revista Docencia Universitaria, 21(1), 81–96. Recuperado de https://revistas.uis.edu.co/index.php/revistadocencia/article/view/11327

Bailey, R., Armour, K., Kirk, D., Jess, M., Pickup, I., Sandford, R., & Theodoulides, A. (2009). The educa-tional benefits claimed for physical education and school sport: An academic review. Research Papers in Education, 24(1), 1–27. https://doi.org/10.1080/02671520701809817

Bergman, P., & Chan, E. W. (2019). Educating students with AI: Insights and policy implications. Brook-ings Institution Report. https://www.brookings.edu/research/educating-students-with-ai/

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assess-ment, Evaluation and Accountability, 21(1), 5–31. https://doi.org/10.1007/s11092-008-9068-5

Borges, M., Jiménez, A., & Rodríguez, E. (2020). La evaluación en educación física desde un enfoque in-clusivo y competencial. Cultura, Ciencia y Deporte, 15(44), 13–20. https://doi.org/10.12800/ccd.v15i44.1432

Calvo, P. (2022). Gemelos digitales y Democracia. Revista del CLAD Reforma y Democracia, (83), 41-70.

Chan, T., & Zhan, Y. (2021). Artificial intelligence and teacher professional development: A review and case study. Computers & Education, 168, 104212. https://doi.org/10.1016/j.compedu.2021.104212

De Jorge-Millán, J. A., Sierra-Díaz, M. J., Pastor-Vicedo, J. C., & González-Víllora, S. (2021). Gamification and physical activity: The relationship between gamified digital applications and the promotion of physical activity in youth. Sustainability, 13(4), 1839. https://doi.org/10.3390/su13041839

Delgado, J. C. V., CHIMBO, K., MARIBEL, O., MUÑOZ, G. F. R., AMORES, N. V. R., PADILLA, B. A., & GONZÁ-LEZ, D. A. Y. (2023). E-PORTFOLIO AS A SUPPORT FOR TEACHING PRACTICE AT THE UNI-VERSITY OF GUAYAQUIL. Human Review, 21(1).

European Commission. (2019). Ethics guidelines for trustworthy AI. High-Level Expert Group on Arti-ficial Intelligence. https://ec.europa.eu/digital-strategy/sites/default/files/ethics-guidelines-trustworthy-ai.pdf

Fullan, M., & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning. Pearson Education. https://michaelfullan.ca/wp-content/uploads/2014/01/3897.Rich_Seam_web.pdf

Griffey, D. C., & Housner, L. D. (2007). Teacher knowledge and learning to teach. In R. P. Pangrazi & M. D. Beighle (Eds.), Dynamic physical education for elementary school children (16th ed., pp. 92–115). Benjamin Cummings.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Herrador-Alcaide, T. C., Hernández-Solís, M., & Gallego, M. D. (2021). Impact of the use of digital tools in university students’ satisfaction and learning outcomes. Education and Information Technolo-gies, 26, 3115–3135. https://doi.org/10.1007/s10639-020-10400-2

Hinojosa-Torres, C., Araya-Hernández, A., Vargas-Díaz, H., & Hurtado-Guerrero, M. (2022). Componen-tes del desempeño en la práctica profesional de estudiantes de educación física: perspectivas y significados desde la triada formativa. Retos, 43, 533–543. https://doi.org/10.47197/retos.v43i0.89316

Hinojosa-Torres, C., Barahona-Fuentes, G., Zavala-Crichton, J. P., Fuentealba-Urra, S., Hurtado-Guerrero, M., Gajardo-Vergara, X., … Yáñez-Sepúlveda, R. (2025). Supervisión de prácticas en la formación inicial de profesores Educación Física: hallazgos, tensiones y propuestas de mejora. Revisión sistemática. Retos, 70, 742–758. https://doi.org/10.47197/retos.v70.115797

Hinojosa-Torres, C., Zavala-Crichton, J. P., Hurtado-Guerrero, M., Espoz-Lazo, S., Farías-Valenzuela, C., Valdivia-Moral, P., Araya-Hernández, A., & Yáñez-Sepúlveda, R. (2025). Eficacia del sistema de retroalimentación en tiempo real en la práctica profesional de estudiantes de educación física. Retos, 64, 221–232. https://doi.org/10.47197/retos.v64.111877

Kirk, D. (2010). Physical education futures. Routledge.

Li, W., Wang, J., Liu, H., & Zhang, Y. (2022). Research on the effectiveness of AI-assisted teaching models in physical education. International Journal of Emerging Technologies in Learning, 17(12), 41–56. https://doi.org/10.3991/ijet.v17i12.30127

Liu, S., Wu, Y., & Zhang, Y. (2023). Smart evaluation systems in higher education: An AI-based approach to physical performance assessment. Education and Information Technologies, 28(2), 1375–1392. https://doi.org/10.1007/s10639-022-11144-3

López-Pastor, V. M., & Kirk, D. (2019). Alternative assessment in physical education: A review of inter-national literature. Journal of Physical Education and Sport Pedagogy, 24(6), 566–578. https://doi.org/10.1080/17408989.2019.1639012

López-Pastor, V. M., Pérez-Pueyo, Á., & Muros, J. J. (2020). La evaluación en Educación Física: propues-tas para una evaluación formativa y compartida. Revista Española de Educación Física y Depor-tes, (429), 43-62.

Martínez-Rolán, X., Cabezuelo-Lorenzo, F., & Oliveira, L. (2025). Los nuevos escenarios de la sociedad digital ante el desafío de la inteligencia artificial (IA) generativa. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, 30, e105080. https://doi.org/10.5007/1518-2924.2025.e105080

Montero-Carretero, C., & Cervelló, E. (2021). Efectos del clima motivacional en la evaluación del ren-dimiento físico en la adolescencia. Revista de Psicología del Deporte, 30(1), 49-58.

Moya-Mata, I., Ruiz-Sánchez, V., & Rosado, A. (2023). Digital competence in physical education teacher education: A systematic review. Education Sciences, 13(1), 56. https://doi.org/10.3390/educsci13010056

Pérez, AT, González, JG, & García, JCF (2024). Práctica de actividad física y autoconcepto físico en estu-diantes. SPORT TK-Revista EuroAmericana de Ciencias del Deporte , 13 , 26-26.

Pino-Ortega, J., García-Rubio, J., & Ibáñez, S. J. (2022). Applications of wearable inertial measurement units in physical education and sport. Sensors, 22(4), 1585. https://doi.org/10.3390/s22041585

Ruiz Muñoz, G. F. ., Vasco Delgado, J. C. ., & Alvear Dávalos, J. M. (2024). Inteligencia artificial y gober-nanza en la gestión académica y administrativa de la educación superior. Revista Social Fronteriza, 4(6), e46508. https://doi.org/10.59814/resofro.2024.4(6)508

Ruiz Muñoz, G. F. ., Vasco Delgado, J. C. ., & Lozano Zamora, S. L. . (2024). Evaluación y acreditación uni-versitaria: Integración de la inteligencia artificial en los sistemas de calidad. Revista Social Fronteriza, 4(6), e46511. https://doi.org/10.59814/resofro.2024.4(6)511

Ruiz Muñoz, G. F., & Vasco Delgado, J. C. (2025). Integración de las tecnologías de la información y la comunicación (TIC) e inteligencia artificial (IA) en la formación docente . Revista De Investiga-ción En Tecnologías De La Información, 13(29), 60–70. https://doi.org/10.36825/RITI.13.29.006

Ruiz Muñoz, G. F., Cruz Navarrete, E. L. ., Paz Zamora, Y. E. ., & Narváez Vega, E. A. . (2025). Educación inclusiva con inteligencia artificial (IA): personalización curricular para estudiantes con necesi-dades educativas especiales (NEE). Revista Social Fronteriza, 5(3). https://doi.org/10.59814/resofro.2025.5(3)704

Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A re-view. Journal of Hazardous Materials, 435, 129067.

Sharma, P., Verma, A., & Bhattacharya, R. (2022). Reliability and validity in educational evaluation: An AI-based framework. Journal of Educational Measurement, 59(3), 420–436. https://doi.org/10.1111/jedm.12345

Tang, Y., Wang, L., & He, W. (2023). Artificial intelligence in physical education: A review and future directions. Computers & Education: Artificial Intelligence, 4, 100088. https://doi.org/10.1016/j.caeai.2023.100088

UNESCO. (2021). Inteligencia artificial y educación: Guía para las personas a cargo de formular políti-cas. París: Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). Recuperado de https://unesdoc.unesco.org/ark:/48223/pf0000376708

UNESCO. (2023). Guidelines for the ethics of artificial intelligence in education. París: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000381836

Vasco Delgado, J. C. ., Quiroz Rojas, E. O. ., & Vera Solórzano, M. L. . (2024). La inteligencia artificial y su impacto en la aplicación de estrategias de comunicación institucional de la Universidad de Gua-yaquil. Revista Social Fronteriza, 4(6), e46510. https://doi.org/10.59814/resofro.2024.4(6)510

Vasco Delgado, J. C., Ortiz Chimbo, K. M., Macas Padilla, B. A., & Sánchez Paredes, C. E. (2023). Modelos de aprendizaje para la educación superior y su influencia sobre la actualización docente. Siner-gias Educativas, 8(2).

Vasco-Delgado, J. C., Macas-Padilla, B. A., Arias-Párraga, K. E., & Sánchez-Parrales, C. E. (2025). Educa-ción inclusiva con inteligencia artificial: personalización curricular para estudiantes con necesi-dades educativas especiales: Inclusive education with artificial intelligence: curriculum custo-mization for students with special educational needs. Multidisciplinary Latin American Journal (MLAJ), 3(2), 1-19. https://doi.org/10.62131/MLAJ-V3-N2-001

Wang, H., Zhao, L., & Ren, J. (2022). Validation of AI-enhanced physical fitness tracking platforms in academic settings. International Journal of Educational Technology in Higher Education, 19, 47. https://doi.org/10.1186/s41239-022-00341-0

Yu, Z., & Lin, M. (2022). Students' acceptance of AI-based feedback in PE training environments. Inter-active Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2022.2114567

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2022). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 19(1), 1–47. https://doi.org/10.1186/s41239-021-00252-1

Zhou, T., Wu, X., Wang, Y., Wang, Y., & Zhang, S. (2023). Application of artificial intelligence in physical education: A systematic review. Education and Information Technologies, 29, 8203–8220. https://doi.org/10.1007/s10639-023-12128-2

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2), 64–70.

Downloads

Published

2025-08-12

Issue

Section

Original Research Article

How to Cite

Vasco Delgado, J. C., Macas Padilla, B. A., Vasco Delgado, L. A., & Vasco Delgado, L. J. (2025). Design and validation of an artificial intelligence-mediated evaluation model for Physical Education. Retos, 70, 1446-1460. https://doi.org/10.47197/retos.v70.116530