Design and validation of an artificial intelligence-mediated evaluation model for Physical Education
DOI:
https://doi.org/10.47197/retos.v70.116530Keywords:
Academic performance, Artificial intelligence, Automated evaluation, Educational model, Physical education assessmentAbstract
Introduction and Objective. The development of technological tools for assessment in physical education has gained increasing interest, especially in higher education contexts that require accuracy and objectivity in measuring student performance. The objective of this research was to design, implement, and empirically validate an automated assessment model, mediated by artificial intelligence, applied to university students in the Physical Activity and Sports Pedagogy program at the University of Guayaquil.
Methodology. Validation was conducted using a quantitative design, through internal reliability analysis, comparison of means, and variance tests.
Results. The results showed significant improvements in academic performance, as well as high acceptance of the proposed model. The tool demonstrated reliability in measurement and reduced bias in the assessment process. The findings are consistent with previous research that proposes the integration of emerging technologies in physical education to promote more objective assessments adapted to student diversity.
Conclusions. It is concluded that the automated model represents a step forward in the modernization of assessment in physical education, and its implementation in other populations with adequate pedagogical support is recommended.
References
Anijovich, R., & Cappelletti, G. (2020). La retroalimentación formativa: Una oportunidad para mejorar los aprendizajes y la enseñanza. Revista Docencia Universitaria, 21(1), 81–96. Recuperado de https://revistas.uis.edu.co/index.php/revistadocencia/article/view/11327
Bailey, R., Armour, K., Kirk, D., Jess, M., Pickup, I., Sandford, R., & Theodoulides, A. (2009). The educa-tional benefits claimed for physical education and school sport: An academic review. Research Papers in Education, 24(1), 1–27. https://doi.org/10.1080/02671520701809817
Bergman, P., & Chan, E. W. (2019). Educating students with AI: Insights and policy implications. Brook-ings Institution Report. https://www.brookings.edu/research/educating-students-with-ai/
Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assess-ment, Evaluation and Accountability, 21(1), 5–31. https://doi.org/10.1007/s11092-008-9068-5
Borges, M., Jiménez, A., & Rodríguez, E. (2020). La evaluación en educación física desde un enfoque in-clusivo y competencial. Cultura, Ciencia y Deporte, 15(44), 13–20. https://doi.org/10.12800/ccd.v15i44.1432
Calvo, P. (2022). Gemelos digitales y Democracia. Revista del CLAD Reforma y Democracia, (83), 41-70.
Chan, T., & Zhan, Y. (2021). Artificial intelligence and teacher professional development: A review and case study. Computers & Education, 168, 104212. https://doi.org/10.1016/j.compedu.2021.104212
De Jorge-Millán, J. A., Sierra-Díaz, M. J., Pastor-Vicedo, J. C., & González-Víllora, S. (2021). Gamification and physical activity: The relationship between gamified digital applications and the promotion of physical activity in youth. Sustainability, 13(4), 1839. https://doi.org/10.3390/su13041839
Delgado, J. C. V., CHIMBO, K., MARIBEL, O., MUÑOZ, G. F. R., AMORES, N. V. R., PADILLA, B. A., & GONZÁ-LEZ, D. A. Y. (2023). E-PORTFOLIO AS A SUPPORT FOR TEACHING PRACTICE AT THE UNI-VERSITY OF GUAYAQUIL. Human Review, 21(1).
European Commission. (2019). Ethics guidelines for trustworthy AI. High-Level Expert Group on Arti-ficial Intelligence. https://ec.europa.eu/digital-strategy/sites/default/files/ethics-guidelines-trustworthy-ai.pdf
Fullan, M., & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning. Pearson Education. https://michaelfullan.ca/wp-content/uploads/2014/01/3897.Rich_Seam_web.pdf
Griffey, D. C., & Housner, L. D. (2007). Teacher knowledge and learning to teach. In R. P. Pangrazi & M. D. Beighle (Eds.), Dynamic physical education for elementary school children (16th ed., pp. 92–115). Benjamin Cummings.
Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.
Herrador-Alcaide, T. C., Hernández-Solís, M., & Gallego, M. D. (2021). Impact of the use of digital tools in university students’ satisfaction and learning outcomes. Education and Information Technolo-gies, 26, 3115–3135. https://doi.org/10.1007/s10639-020-10400-2
Hinojosa-Torres, C., Araya-Hernández, A., Vargas-Díaz, H., & Hurtado-Guerrero, M. (2022). Componen-tes del desempeño en la práctica profesional de estudiantes de educación física: perspectivas y significados desde la triada formativa. Retos, 43, 533–543. https://doi.org/10.47197/retos.v43i0.89316
Hinojosa-Torres, C., Barahona-Fuentes, G., Zavala-Crichton, J. P., Fuentealba-Urra, S., Hurtado-Guerrero, M., Gajardo-Vergara, X., … Yáñez-Sepúlveda, R. (2025). Supervisión de prácticas en la formación inicial de profesores Educación Física: hallazgos, tensiones y propuestas de mejora. Revisión sistemática. Retos, 70, 742–758. https://doi.org/10.47197/retos.v70.115797
Hinojosa-Torres, C., Zavala-Crichton, J. P., Hurtado-Guerrero, M., Espoz-Lazo, S., Farías-Valenzuela, C., Valdivia-Moral, P., Araya-Hernández, A., & Yáñez-Sepúlveda, R. (2025). Eficacia del sistema de retroalimentación en tiempo real en la práctica profesional de estudiantes de educación física. Retos, 64, 221–232. https://doi.org/10.47197/retos.v64.111877
Kirk, D. (2010). Physical education futures. Routledge.
Li, W., Wang, J., Liu, H., & Zhang, Y. (2022). Research on the effectiveness of AI-assisted teaching models in physical education. International Journal of Emerging Technologies in Learning, 17(12), 41–56. https://doi.org/10.3991/ijet.v17i12.30127
Liu, S., Wu, Y., & Zhang, Y. (2023). Smart evaluation systems in higher education: An AI-based approach to physical performance assessment. Education and Information Technologies, 28(2), 1375–1392. https://doi.org/10.1007/s10639-022-11144-3
López-Pastor, V. M., & Kirk, D. (2019). Alternative assessment in physical education: A review of inter-national literature. Journal of Physical Education and Sport Pedagogy, 24(6), 566–578. https://doi.org/10.1080/17408989.2019.1639012
López-Pastor, V. M., Pérez-Pueyo, Á., & Muros, J. J. (2020). La evaluación en Educación Física: propues-tas para una evaluación formativa y compartida. Revista Española de Educación Física y Depor-tes, (429), 43-62.
Martínez-Rolán, X., Cabezuelo-Lorenzo, F., & Oliveira, L. (2025). Los nuevos escenarios de la sociedad digital ante el desafío de la inteligencia artificial (IA) generativa. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, 30, e105080. https://doi.org/10.5007/1518-2924.2025.e105080
Montero-Carretero, C., & Cervelló, E. (2021). Efectos del clima motivacional en la evaluación del ren-dimiento físico en la adolescencia. Revista de Psicología del Deporte, 30(1), 49-58.
Moya-Mata, I., Ruiz-Sánchez, V., & Rosado, A. (2023). Digital competence in physical education teacher education: A systematic review. Education Sciences, 13(1), 56. https://doi.org/10.3390/educsci13010056
Pérez, AT, González, JG, & García, JCF (2024). Práctica de actividad física y autoconcepto físico en estu-diantes. SPORT TK-Revista EuroAmericana de Ciencias del Deporte , 13 , 26-26.
Pino-Ortega, J., García-Rubio, J., & Ibáñez, S. J. (2022). Applications of wearable inertial measurement units in physical education and sport. Sensors, 22(4), 1585. https://doi.org/10.3390/s22041585
Ruiz Muñoz, G. F. ., Vasco Delgado, J. C. ., & Alvear Dávalos, J. M. (2024). Inteligencia artificial y gober-nanza en la gestión académica y administrativa de la educación superior. Revista Social Fronteriza, 4(6), e46508. https://doi.org/10.59814/resofro.2024.4(6)508
Ruiz Muñoz, G. F. ., Vasco Delgado, J. C. ., & Lozano Zamora, S. L. . (2024). Evaluación y acreditación uni-versitaria: Integración de la inteligencia artificial en los sistemas de calidad. Revista Social Fronteriza, 4(6), e46511. https://doi.org/10.59814/resofro.2024.4(6)511
Ruiz Muñoz, G. F., & Vasco Delgado, J. C. (2025). Integración de las tecnologías de la información y la comunicación (TIC) e inteligencia artificial (IA) en la formación docente . Revista De Investiga-ción En Tecnologías De La Información, 13(29), 60–70. https://doi.org/10.36825/RITI.13.29.006
Ruiz Muñoz, G. F., Cruz Navarrete, E. L. ., Paz Zamora, Y. E. ., & Narváez Vega, E. A. . (2025). Educación inclusiva con inteligencia artificial (IA): personalización curricular para estudiantes con necesi-dades educativas especiales (NEE). Revista Social Fronteriza, 5(3). https://doi.org/10.59814/resofro.2025.5(3)704
Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A re-view. Journal of Hazardous Materials, 435, 129067.
Sharma, P., Verma, A., & Bhattacharya, R. (2022). Reliability and validity in educational evaluation: An AI-based framework. Journal of Educational Measurement, 59(3), 420–436. https://doi.org/10.1111/jedm.12345
Tang, Y., Wang, L., & He, W. (2023). Artificial intelligence in physical education: A review and future directions. Computers & Education: Artificial Intelligence, 4, 100088. https://doi.org/10.1016/j.caeai.2023.100088
UNESCO. (2021). Inteligencia artificial y educación: Guía para las personas a cargo de formular políti-cas. París: Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). Recuperado de https://unesdoc.unesco.org/ark:/48223/pf0000376708
UNESCO. (2023). Guidelines for the ethics of artificial intelligence in education. París: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000381836
Vasco Delgado, J. C. ., Quiroz Rojas, E. O. ., & Vera Solórzano, M. L. . (2024). La inteligencia artificial y su impacto en la aplicación de estrategias de comunicación institucional de la Universidad de Gua-yaquil. Revista Social Fronteriza, 4(6), e46510. https://doi.org/10.59814/resofro.2024.4(6)510
Vasco Delgado, J. C., Ortiz Chimbo, K. M., Macas Padilla, B. A., & Sánchez Paredes, C. E. (2023). Modelos de aprendizaje para la educación superior y su influencia sobre la actualización docente. Siner-gias Educativas, 8(2).
Vasco-Delgado, J. C., Macas-Padilla, B. A., Arias-Párraga, K. E., & Sánchez-Parrales, C. E. (2025). Educa-ción inclusiva con inteligencia artificial: personalización curricular para estudiantes con necesi-dades educativas especiales: Inclusive education with artificial intelligence: curriculum custo-mization for students with special educational needs. Multidisciplinary Latin American Journal (MLAJ), 3(2), 1-19. https://doi.org/10.62131/MLAJ-V3-N2-001
Wang, H., Zhao, L., & Ren, J. (2022). Validation of AI-enhanced physical fitness tracking platforms in academic settings. International Journal of Educational Technology in Higher Education, 19, 47. https://doi.org/10.1186/s41239-022-00341-0
Yu, Z., & Lin, M. (2022). Students' acceptance of AI-based feedback in PE training environments. Inter-active Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2022.2114567
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2022). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 19(1), 1–47. https://doi.org/10.1186/s41239-021-00252-1
Zhou, T., Wu, X., Wang, Y., Wang, Y., & Zhang, S. (2023). Application of artificial intelligence in physical education: A systematic review. Education and Information Technologies, 29, 8203–8220. https://doi.org/10.1007/s10639-023-12128-2
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2), 64–70.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan Carlos Vasco Delgado, Betty Azucena Macas Padilla, Luis Aníbal Vasco Delgado, Leonardo Jesús Vasco Delgado

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.