Cognitive functioning, fat mass and physical activity in young adults

Authors

DOI:

https://doi.org/10.47197/retos.v63.108797

Keywords:

Cognition, Physical Activity, Psychology, Body Fat Distribution, Executive Functions, Biolectric Impedance, Students, Cognitive-Motor Interference

Abstract

Introduction: Evidence suggests an association between excess weight and low cognitive performance; however, findings are inconsistent due to variations in measurement approaches. Further research is needed to explore this link, considering factors such as physical activity and education level.

Objective: this study aimed to: (a) identify possible differences in cognitive performance between participants with high versus normal fat mass levels, and (b) assess the effects of fat mass levels and physical activity on executive and cognitive-motor interference performance.

Methodology: A non-experimental design was conducted, involving 61 young adult participants (Mage=18.9, SD=1.9) who underwent evaluations for executive functioning, cognitive-motor interference in dual tasks, body composition, and physical activity.

Results: Although differences favoring participants with high fat mass levels were found, they were not statistically significant. These results remained consistent regardless of physical activity level.

Discussion: While some studies have found an association between high adiposity and lower cognitive performance, others have not detected this relationship. Our findings align with the latter, emphasizing the need for future studies to include mediating variables to better understand this complex association.

Conclusion: this investigation supports the notion that individuals with overweight and obesity do not exhibit inferior executive and cognitive-motor interaction performance compared to individuals with normal fat mass levels.

Author Biography

  • Haney Aguirre-Loaiza, Universidad Católica de Pereira

    Colombia, Risaralda

References

Aguilar, S., Valencia, O., & Villalba, J. (2017). Validación de la Escala Barrat de Impulsividad (BIS-11) en población bogotana. Diversitas, 13(2), 143–157. https://doi.org/10.15332/s1794-9998.2017.0002.01

Aguirre-Loaiza, H., Arenas, J., Arias, I., Franco-Jímenez, A., Barbosa-Granados, S., Ramos-Bermúdez, S., Ayala-Zuluaga, F., Núñez, C., & García-Mas, A. (2019). Effect of Acute Physical Exercise on Executive Functions and Emotional Recognition: Analysis of Moderate to High Intensity in Young Adults. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02774

Aguirre-Loaiza, H., Arias, I., Bonilla, S., Ramírez, R., Ramírez-Herrera, S., Nanez, J., Barbosa-Granados, S., & Arenas-Granada, J. (2022). Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session. Physiology & Behavior, 254, 113902. https://doi.org/https://doi.org/10.1016/j.physbeh.2022.113902.

Aguirre-Loaiza, H., Herrera-Agudelo, L., & Nanez, J. (2024). Normality Assumption in Health Sciences Research: What Is the Strongest Test? How to Calculate It? Salud Uninorte, 40(2), 355–358. https://doi.org/10.14482/sun.40.02.546.741

Aguirre-Loaiza, H., Mejía-Bolaño, A., Cualdrón, J., & Ospina, S. (2021). Psychology, Physical Activity, and Post-pandemic Health: An Embodied Perspective. Frontiers in Psychology, 12(March), 10–13. https://doi.org/10.3389/fpsyg.2021.588931

Al-Yahya E, Dawes, H, Smith, L, Dennis, A, Howells, K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011 Jan;35(3):715-28. doi: 10.1016/j.neubiorev.2010.08.008.

Aldobali, M., & Pal, K. (2021, July 4). Bioelectrical Impedance Analysis for Evaluation of Body Composition: A Review. 2021 International Congress of Advanced Technology and Engineering, ICOTEN. https://doi.org/10.1109/ICOTEN52080.2021.9493494

Beurskens, R., Steinberg, F., Antoniewicz, F., Wolff, W., & Granacher, U. (2016). Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plasticity, 2016, 1–9. https://doi.org/10.1155/2016/8032180

Bhutani, S., & Cooper, J. (2020). COVID-19–Related Home Confinement in Adults: Weight Gain Risks and Opportunities. Obesity, 28(9), 1576–1577. https://doi.org/10.1002/oby.22904

Bove, R.., Gerweck, A., Mancuso, S., Bredella, M., Sherman, J., & Miller, K. (2016). Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity, 24(4), 954–961. https://doi.org/10.1002/oby.21415

Bowie, C., & Harvey, P. (2006). Administration and interpretation of the Trail Making Test. Nature Protocols, 1(5), 2277–2281. https://doi.org/10.1038/nprot.2006.390

Cabas, K., González, Y., & Mendoza, C. (2018). Funcionamiento ejecutivo y depresión en universitarios con normopeso, sobrepeso y obesidad Tipo I. Informes Psicológicos, 18(1), 133–144. https://doi.org/10.18566/infpsic.v18n1a07

Cadavid-Ruiz, N., Herrán-Murillo, Y., Patiño-Gil, J., Ochoa-Muñoz, A., & Varela-Arévalo, M. (2023). Actividad física y percepción de bienestar en la universidad: estudio longitudinal durante el covid-19. Retos, 50, 102–112. https://doi.org/10.47197/retos.v50.98968

Catoira, N.., Tapajóz, F., Allegri, R., Lajfer, J., Rodríguez Cámara, M., Iturry, M.., & Castaño, G. O. (2016). Obesity, metabolic profile, and inhibition failure: Young women under scrutiny. Physiology and Behavior, 157, 87–93. https://doi.org/10.1016/j.physbeh.2016.01.040

Chen, R., & Herskovits, E. (2015). Examining the multifactorial nature of a cognitive process using Bayesian brain-behavior modeling. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 41, 117–125. https://doi.org/10.1016/j.compmedimag.2014.05.001

Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-Country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. https://doi.org/10.3758/BRM.41.4.1149.

Franco, S., & Ayala, C. (2023). Programa de acondicionamiento físico para la salud de mujeres adolescentes. Lecturas: Educación Física y Deportes, 27(298), 125–140. https://doi.org/10.46642/efd.v27i298.3037

Gadde, K., Martin, C. K., Berthoud, H., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011

General Assembly of the United Nations. (2011). Political Declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. United Nations. https://www.un.org/es/ga/ncdmeeting2011/

Herrera-Agudelo, L., Aguirre-Loaiza, H., Ortega, M., & Múñoz, A. (2021). Metacognitive Process and Levels of Physical Activity in University Students. Tesis Psicológica, 2(2), 1–20. https://doi.org/https://doi.org/10.37511/tesis.v16n2a4

Huang, T., Chen, Z., Shen, L., Fan, X., & Wang, K. (2019). Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood. Medicina, 55(6), 221. https://doi.org/10.3390/medicina55060221

Ishihara, T., Drollette, E., Ludyga, S., Hillman, C., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience y Biobehavioral Reviews, 128, 258–269. https://doi.org/10.1016/j.neubiorev.2021.06.026

Jackson, P., & Decety, J. (2004). Motor cognition: a new paradigm to study self–other interactions. Current Opinion in Neurobiology, 14(2), 259–263. https://doi.org/10.1016/j.conb.2004.01.020

Kalanthroff, E., Goldfarb, L., & Henik, A. (2013). Evidence for interaction between the stop signal and the Stroop task conflict. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 579–592. https://doi.org/10.1037/a0027429

Kamijo, K., Khan, N., Pontifex, M., Scudder, M., Drollette, E., Raine, L. B., Evans, E. M., Castelli, D.., & Hillman, C. (2012). The Relation of Adiposity to Cognitive Control and Scholastic Achievement in Preadolescent Children. Obesity, 20(12), 2406–2411. https://doi.org/10.1038/oby.2012.112

Killgore, W., Weber, M. (2014). Sleep Deprivation and Cognitive Performance. In: Bianchi, M. (eds) Sleep Deprivation and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9087-6_16

Montero-Odasso, M., Sarquis-Adamson, Y., Speechley, M., Borrie, M., Hachinski, V., Wells, J., Riccio, P., Schapira, M., Sejdic, E., Camicioli, R., Bartha, R., McIlroy, W., & Muir-Hunter, S. (2017). Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment. JAMA Neurology, 74(7), 857. https://doi.org/10.1001/jamaneurol.2017.0643

Muhammad, M., Kartiko, D., Siantoro, G., Yosika, G., Subagio, I., Phanpheng, Y., Irsyada, M., Pramono, B., Kusuma, I., & Pranoto, A. (2024). El efecto del ejercicio combinado durante cuatro semanas mejora las funciones cognitivas en mujeres obesas (The effect of four-weeks combined exercise improves cognitive functions in obese women). Retos, 60, 579–584. https://doi.org/10.47197/retos.v60.106812

Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

Nuttall, F.. (2015). Body Mass Index. Obesity, BMI, and Health: A Critical Review. Nutrition Today, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092

Osorio-Cualdrón, J., Ospina, S., Mejía-Bolaños, A., Zapata, M., & Aguirre-Loaiza, H. (2021). Inactividad física, sobrepeso y obesidad: implicaciones sobre los procesos cognitivos. In Mejoramiento de las condiciones de salud en el Eje Cafetero. Investigación para el desarrollo regional (pp. 99–115). Universidad Católica de Pereira. https://doi.org/10.31908/eucp.63.c629

Pedraza, O., Salazar, A., Sierra, F., Soler, D., Castro, J., Castillo, P., Hernandez, M., & Piñeros, C. (2017). Confiabilidad, validez de criterio y discriminante del Montreal Cognitive Assessment (MoCA) test, en un grupo de Adultos de Bogotá. Acta Médica Colombiana, 41(4). https://doi.org/10.36104/amc.2016.693

Plummer, P., Eskes, G., Wallace, S., Giuffrida, C., Fraas, M., Campbell, G., Clifton, K., & Skidmore, E. (2013). Cognitive-Motor Interference During Functional Mobility After Stroke: State of the Science and Implications for Future Research. Archives of Physical Medicine and Rehabilitation, 94(12), 2565-2574.e6. https://doi.org/10.1016/j.apmr.2013.08.002

Sánchez-Kuhn, A., León, J., Gôngora, K., Pérez-Fernández, C., Sánchez-Santed, F., Moreno, M., & Flores, P. (2017). Go/No-Go task performance predicts differences in compulsivity but not in impulsivity personality traits. Psychiatry Research, 257, 270–275. https://doi.org/10.1016/j.psychres.2017.07.064

Sandi, C. (2013), Stress and cognition. WIREs Cogn Sci, 4: 245-261. https://doi.org/10.1002/wcs.1222

Sanz, J. (2013). 50 años de los Inventarios de Depresión de Beck: consejos para la utilización de la adaptación española del BDI-II en la práctica clínica. Papeles Del Psicólogo, 34(3), 161–168.

Shao, Z., Janse, E., Visser, K., & Meyer, A. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00772

Silva, C., Mendoza, A., & González, K. (2024). Toma de decisiones, planificación y flexibilidad cognitiva: caracterización de un grupo de adultos con sobrepeso. CES Psicología, 17(2), 45–57. https://doi.org/10.21615/cesp.6624

Smith, E., Bailey, P., Crawford, J., Samaras, K., Baune, B., Campbell, L., Kochan, N., Menant, J., Sturnieks, D. L., Brodaty, H., Sachdev, P., & Trollor, J. N. (2014). Adiposity Estimated Using Dual Energy X‐Ray Absorptiometry and Body Mass Index and Its Association with Cognition in Elderly Adults. Journal of the American Geriatrics Society, 62(12), 2311–2318. https://doi.org/10.1111/jgs.13157

Stanford, M., Mathias, C., Dougherty, D., Lake, S., Anderson, N., & Patton, J. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences, 47(5), 385–395. https://doi.org/10.1016/j.paid.2009.04.008

Szcześniewska, P., Hanć, T., Bryl, E., Dutkiewicz, A., Borkowska, A., Paszyńska, E., Słopień, A., & Dmitrzak-Węglarz, M. (2021). Do Hot Executive Functions Relate to BMI and Body Composition in School Age Children? Brain Sciences, 11(6), 780. https://doi.org/10.3390/brainsci11060780

Van Poppel, M., Chinapaw, M., Mokkink, L., van Mechelen, W., & Terwee, C. (2010). Physical Activity Questionnaires for Adults. Sports Medicine, 40(7), 565–600. https://doi.org/10.2165/11531930-000000000-00000

World Health Organization. (2024, March 1). Obesity and overweight. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight

World Medical Association. (2013). World Medical Association Declaration of Helsinki. JAMA -Journal of the American Medical Association, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Yang, Y., Shields, G. Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225–244. https://doi.org/10.1016/j.neubiorev.2017.11.020

Downloads

Published

01-02-2025

Issue

Section

Original Research Article

How to Cite

Zapata, C., García-Quevedo, D., Gartner, M., Ayala-Zuluaga, C., Ramos, S., González-Correa, C.-A., Tapasco-Tapasco, L.-O., García, A., Martínez-Pernía, D., Migeot, J., Toro, F., Nanez, J., Osorio-Cualdrón, J., Mejía-Bolaño, A., Arias, I., Barrios-Barinas, L., & Aguirre-Loaiza, H. (2025). Cognitive functioning, fat mass and physical activity in young adults . Retos, 63, 326-337. https://doi.org/10.47197/retos.v63.108797