Funcionamiento cognitivo, masa grasa y actividad física en adultos jóvenes
DOI:
https://doi.org/10.47197/retos.v63.108797Palabras clave:
Bioelectrical impedance, body fat distribution, cognition, executive functions, physical activity, Bioimpedancia eléctrica, distribución de grasa corporal, cognición, funciones ejecutivas, actividad físicaResumen
Introducción: La evidencia sugiere una asociación entre el exceso de peso y el bajo rendimiento cognitivo, aunque los hallazgos son inconsistentes debido a las variaciones en los enfoques de medición. Se necesitan más investigaciones para explorar este vínculo, teniendo en cuenta factores como la actividad física y el nivel educativo.
Objetivo: este estudio se propuso: (a) identificar posibles diferencias en el rendimiento cognitivo entre participantes con niveles de masa grasa altos frente a normales, y (b) evaluar el efecto de los niveles de masa grasa y la actividad física sobre el rendimiento ejecutivo y la interferencia cognitivo-motora.
Metodología: se realizó un estudio de diseño no experimental en el que participaron 61 adultos (Medad=18.9, DE=1.9) jóvenes que desarrollaron evaluaciones de funcionamiento ejecutivo, interferencia cognitivo-motora en tareas duales, composición corporal y actividad física.
Resultados: aunque se encontraron diferencias que favorecían a aquellos con niveles de masa grasa altos, estas no fueron estadísticamente significativas. Estos resultados se mantuvieron independientemente del nivel de actividad física.
Discusión: Mientras que algunos estudios han encontrado una asociación entre alta adiposidad y menor rendimiento cognitivo, otros no han detectado esta relación. Nuestros hallazgos se alinean con estos últimos, enfatizando la necesidad de que futuros estudios incluyan variables mediadoras para comprender mejor esta compleja asociación.
Conclusión: esta investigación apoya la noción de que los individuos con sobrepeso y obesidad no muestran un rendimiento ejecutivo y de interacción físico-cognitiva inferior en comparación con los individuos con niveles de masa grasa normales.
Referencias
Aguilar, S., Valencia, O., & Villalba, J. (2017). Validación de la Escala Barrat de Impulsividad (BIS-11) en población bogotana. Diversitas, 13(2), 143–157. https://doi.org/10.15332/s1794-9998.2017.0002.01
Aguirre-Loaiza, H., Arenas, J., Arias, I., Franco-Jímenez, A., Barbosa-Granados, S., Ramos-Bermúdez, S., Ayala-Zuluaga, F., Núñez, C., & García-Mas, A. (2019). Effect of Acute Physical Exercise on Executive Functions and Emotional Recognition: Analysis of Moderate to High Intensity in Young Adults. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02774
Aguirre-Loaiza, H., Arias, I., Bonilla, S., Ramírez, R., Ramírez-Herrera, S., Nanez, J., Barbosa-Granados, S., & Arenas-Granada, J. (2022). Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session. Physiology & Behavior, 254, 113902. https://doi.org/https://doi.org/10.1016/j.physbeh.2022.113902.
Aguirre-Loaiza, H., Herrera-Agudelo, L., & Nanez, J. (2024). Normality Assumption in Health Sciences Research: What Is the Strongest Test? How to Calculate It? Salud Uninorte, 40(2), 355–358. https://doi.org/10.14482/sun.40.02.546.741
Aguirre-Loaiza, H., Mejía-Bolaño, A., Cualdrón, J., & Ospina, S. (2021). Psychology, Physical Activity, and Post-pandemic Health: An Embodied Perspective. Frontiers in Psychology, 12(March), 10–13. https://doi.org/10.3389/fpsyg.2021.588931
Al-Yahya E, Dawes, H, Smith, L, Dennis, A, Howells, K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011 Jan;35(3):715-28. doi: 10.1016/j.neubiorev.2010.08.008.
Aldobali, M., & Pal, K. (2021, July 4). Bioelectrical Impedance Analysis for Evaluation of Body Composition: A Review. 2021 International Congress of Advanced Technology and Engineering, ICOTEN. https://doi.org/10.1109/ICOTEN52080.2021.9493494
Beurskens, R., Steinberg, F., Antoniewicz, F., Wolff, W., & Granacher, U. (2016). Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plasticity, 2016, 1–9. https://doi.org/10.1155/2016/8032180
Bhutani, S., & Cooper, J. (2020). COVID-19–Related Home Confinement in Adults: Weight Gain Risks and Opportunities. Obesity, 28(9), 1576–1577. https://doi.org/10.1002/oby.22904
Bove, R.., Gerweck, A., Mancuso, S., Bredella, M., Sherman, J., & Miller, K. (2016). Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity, 24(4), 954–961. https://doi.org/10.1002/oby.21415
Bowie, C., & Harvey, P. (2006). Administration and interpretation of the Trail Making Test. Nature Protocols, 1(5), 2277–2281. https://doi.org/10.1038/nprot.2006.390
Cabas, K., González, Y., & Mendoza, C. (2018). Funcionamiento ejecutivo y depresión en universitarios con normopeso, sobrepeso y obesidad Tipo I. Informes Psicológicos, 18(1), 133–144. https://doi.org/10.18566/infpsic.v18n1a07
Cadavid-Ruiz, N., Herrán-Murillo, Y., Patiño-Gil, J., Ochoa-Muñoz, A., & Varela-Arévalo, M. (2023). Actividad física y percepción de bienestar en la universidad: estudio longitudinal durante el covid-19. Retos, 50, 102–112. https://doi.org/10.47197/retos.v50.98968
Catoira, N.., Tapajóz, F., Allegri, R., Lajfer, J., Rodríguez Cámara, M., Iturry, M.., & Castaño, G. O. (2016). Obesity, metabolic profile, and inhibition failure: Young women under scrutiny. Physiology and Behavior, 157, 87–93. https://doi.org/10.1016/j.physbeh.2016.01.040
Chen, R., & Herskovits, E. (2015). Examining the multifactorial nature of a cognitive process using Bayesian brain-behavior modeling. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 41, 117–125. https://doi.org/10.1016/j.compmedimag.2014.05.001
Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-Country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. https://doi.org/10.3758/BRM.41.4.1149.
Franco, S., & Ayala, C. (2023). Programa de acondicionamiento físico para la salud de mujeres adolescentes. Lecturas: Educación Física y Deportes, 27(298), 125–140. https://doi.org/10.46642/efd.v27i298.3037
Gadde, K., Martin, C. K., Berthoud, H., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011
General Assembly of the United Nations. (2011). Political Declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. United Nations. https://www.un.org/es/ga/ncdmeeting2011/
Herrera-Agudelo, L., Aguirre-Loaiza, H., Ortega, M., & Múñoz, A. (2021). Metacognitive Process and Levels of Physical Activity in University Students. Tesis Psicológica, 2(2), 1–20. https://doi.org/https://doi.org/10.37511/tesis.v16n2a4
Huang, T., Chen, Z., Shen, L., Fan, X., & Wang, K. (2019). Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood. Medicina, 55(6), 221. https://doi.org/10.3390/medicina55060221
Ishihara, T., Drollette, E., Ludyga, S., Hillman, C., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience y Biobehavioral Reviews, 128, 258–269. https://doi.org/10.1016/j.neubiorev.2021.06.026
Jackson, P., & Decety, J. (2004). Motor cognition: a new paradigm to study self–other interactions. Current Opinion in Neurobiology, 14(2), 259–263. https://doi.org/10.1016/j.conb.2004.01.020
Kalanthroff, E., Goldfarb, L., & Henik, A. (2013). Evidence for interaction between the stop signal and the Stroop task conflict. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 579–592. https://doi.org/10.1037/a0027429
Kamijo, K., Khan, N., Pontifex, M., Scudder, M., Drollette, E., Raine, L. B., Evans, E. M., Castelli, D.., & Hillman, C. (2012). The Relation of Adiposity to Cognitive Control and Scholastic Achievement in Preadolescent Children. Obesity, 20(12), 2406–2411. https://doi.org/10.1038/oby.2012.112
Killgore, W., Weber, M. (2014). Sleep Deprivation and Cognitive Performance. In: Bianchi, M. (eds) Sleep Deprivation and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9087-6_16
Montero-Odasso, M., Sarquis-Adamson, Y., Speechley, M., Borrie, M., Hachinski, V., Wells, J., Riccio, P., Schapira, M., Sejdic, E., Camicioli, R., Bartha, R., McIlroy, W., & Muir-Hunter, S. (2017). Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment. JAMA Neurology, 74(7), 857. https://doi.org/10.1001/jamaneurol.2017.0643
Muhammad, M., Kartiko, D., Siantoro, G., Yosika, G., Subagio, I., Phanpheng, Y., Irsyada, M., Pramono, B., Kusuma, I., & Pranoto, A. (2024). El efecto del ejercicio combinado durante cuatro semanas mejora las funciones cognitivas en mujeres obesas (The effect of four-weeks combined exercise improves cognitive functions in obese women). Retos, 60, 579–584. https://doi.org/10.47197/retos.v60.106812
Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Nuttall, F.. (2015). Body Mass Index. Obesity, BMI, and Health: A Critical Review. Nutrition Today, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092
Osorio-Cualdrón, J., Ospina, S., Mejía-Bolaños, A., Zapata, M., & Aguirre-Loaiza, H. (2021). Inactividad física, sobrepeso y obesidad: implicaciones sobre los procesos cognitivos. In Mejoramiento de las condiciones de salud en el Eje Cafetero. Investigación para el desarrollo regional (pp. 99–115). Universidad Católica de Pereira. https://doi.org/10.31908/eucp.63.c629
Pedraza, O., Salazar, A., Sierra, F., Soler, D., Castro, J., Castillo, P., Hernandez, M., & Piñeros, C. (2017). Confiabilidad, validez de criterio y discriminante del Montreal Cognitive Assessment (MoCA) test, en un grupo de Adultos de Bogotá. Acta Médica Colombiana, 41(4). https://doi.org/10.36104/amc.2016.693
Plummer, P., Eskes, G., Wallace, S., Giuffrida, C., Fraas, M., Campbell, G., Clifton, K., & Skidmore, E. (2013). Cognitive-Motor Interference During Functional Mobility After Stroke: State of the Science and Implications for Future Research. Archives of Physical Medicine and Rehabilitation, 94(12), 2565-2574.e6. https://doi.org/10.1016/j.apmr.2013.08.002
Sánchez-Kuhn, A., León, J., Gôngora, K., Pérez-Fernández, C., Sánchez-Santed, F., Moreno, M., & Flores, P. (2017). Go/No-Go task performance predicts differences in compulsivity but not in impulsivity personality traits. Psychiatry Research, 257, 270–275. https://doi.org/10.1016/j.psychres.2017.07.064
Sandi, C. (2013), Stress and cognition. WIREs Cogn Sci, 4: 245-261. https://doi.org/10.1002/wcs.1222
Sanz, J. (2013). 50 años de los Inventarios de Depresión de Beck: consejos para la utilización de la adaptación española del BDI-II en la práctica clínica. Papeles Del Psicólogo, 34(3), 161–168.
Shao, Z., Janse, E., Visser, K., & Meyer, A. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00772
Silva, C., Mendoza, A., & González, K. (2024). Toma de decisiones, planificación y flexibilidad cognitiva: caracterización de un grupo de adultos con sobrepeso. CES Psicología, 17(2), 45–57. https://doi.org/10.21615/cesp.6624
Smith, E., Bailey, P., Crawford, J., Samaras, K., Baune, B., Campbell, L., Kochan, N., Menant, J., Sturnieks, D. L., Brodaty, H., Sachdev, P., & Trollor, J. N. (2014). Adiposity Estimated Using Dual Energy X‐Ray Absorptiometry and Body Mass Index and Its Association with Cognition in Elderly Adults. Journal of the American Geriatrics Society, 62(12), 2311–2318. https://doi.org/10.1111/jgs.13157
Stanford, M., Mathias, C., Dougherty, D., Lake, S., Anderson, N., & Patton, J. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences, 47(5), 385–395. https://doi.org/10.1016/j.paid.2009.04.008
Szcześniewska, P., Hanć, T., Bryl, E., Dutkiewicz, A., Borkowska, A., Paszyńska, E., Słopień, A., & Dmitrzak-Węglarz, M. (2021). Do Hot Executive Functions Relate to BMI and Body Composition in School Age Children? Brain Sciences, 11(6), 780. https://doi.org/10.3390/brainsci11060780
Van Poppel, M., Chinapaw, M., Mokkink, L., van Mechelen, W., & Terwee, C. (2010). Physical Activity Questionnaires for Adults. Sports Medicine, 40(7), 565–600. https://doi.org/10.2165/11531930-000000000-00000
World Health Organization. (2024, March 1). Obesity and overweight. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
World Medical Association. (2013). World Medical Association Declaration of Helsinki. JAMA -Journal of the American Medical Association, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053
Yang, Y., Shields, G. Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225–244. https://doi.org/10.1016/j.neubiorev.2017.11.020
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Camila Zapata, Danna García-Quevedo, Manuela Gartner, Carlos Ayala-Zuluaga, Santiago Ramos, Carlos-Augusto González-Correa, Luz-Oleyda Tapasco-Tapasco, Angélica García, David Martínez-Pernía , Joaquin Migeot, Felipe Toro, Jonathan Nanez, Juliana Osorio-Cualdrón, Antonio Mejía-Bolaño, Ianelleen Arias, Laura Barrios-Barinas, Haney Aguirre-Loaiza

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess