Análise multivariada dos determinantes antropométricos da carga de treino no badminton juvenil

Autores

DOI:

https://doi.org/10.47197/retos.v71.117465

Palavras-chave:

Carga de treino, antropometria, atletas jovens, desempenho no badminton , análise de agrupamento

Resumo

Enquadramento: A monitorização da carga de treino em atletas juvenis é essencial para otimizar o desempenho e reduzir o risco de lesões; No entanto, existe uma investigação limitada sobre a forma como as características antropométricas influenciam a tolerância à carga no badminton. Este estúdio investigou a associação entre as medidas de carga de treino e os perfis antropométricos em jugadores juvenis de competição.

Métodos: Participação de cinco atletas, homens e mulheres, com carga externa registada através de sensores acelerométricos e avaliações antropométricas realizadas sob protocolos padronizados. Se aplicou o algoritmo de clustering Louvain para classificar os jogadores em diferentes grupos de carga, enquanto a regressão logística multinomial (RLM) identificava os preditores chave da classificação de carga.

Resultados: O cluster Louvain revelou três grupos de carga distintos: Alta (HL), Moderada (ML) e Baja (LL), refletindo padrões naturais na distribuição da carga externa. A análise de RLM mostrou que a estatura, o peso corporal e a longitude de piercing foram preditores significativos da classificação. Os jogadores mais altos e pesados ​​​​tendiam a pertencer ao grupo HL, enquanto uma grande longitude de pedra se associava positivamente à classificação ML, possivelmente ligada à mecânica de zancada e à economia de movimento. Outras medidas circunferenciais (cintura, cadeia, perímetro braquial médio) tiveram um impacto mínimo, e os anos de experiência não predizeram significativamente a tolerância à carga.

Conclusão: Estes hallazgos subrayan o valor de combinar técnicas de clustering baseadas em redes com modelos multivariados para capturar interações complexas na carga do atleta. Na prática, os resultados sugerem que certos rasgos antropométricos, especialmente a estatura, a massa corporal e a longitude das extremidades, desempenham um papel importante na capacidade dos atletas para sustentar as cargas de treino. A integração de avaliações antropométricas individualizadas na monitorização da carga pode suportar estratégias de treino baseadas na evidência de que potencia o desempenho e reduz o risco de lesão em jogadores de badminton juvenis.

Referências

Alcock, A., & Cable, N. T. (2009). A comparison of singles and doubles badminton: heart rate response, player profiles and game characteristics. International Journal of Performance Analysis in Sport, 9(2), 228–237. https://doi.org/Alcock, A., & Cable, N. T. (2009). A comparison of singles and doubles badminton: heart rate response, player profiles and game characteristics. Interna-tional Journal of Performance Analysis in Sport, 9(2), 228-237

Angga, P. D. (2019). Anthropometric and motor performance of junior badminton athlete. In 2nd In-ternational Conference on Sports Sciences and Health 2018 (2nd ICSSH 2018Atlantis Press, 143–146.

Bartlett, J. D., O’Connor, F., Pitchford, N., & Torres-Ronda, L., & Robertson, S. J. (2017). Relationships between internal and external training load in team-sport athletes: Evidence for an individuali-zed approach. International Journal of Sports Physiology and Performance, 12(2), 230–234. https://doi.org/https://doi.org/10.1123/ijspp.2015-0791

Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic regression. Critical Care, 9(1), 112.

Biró, A., Cuesta-Vargas, & L., S. (2024). AI-Assisted fatigue and stamina control for performance sports on IMU-generated multivariate times series datasets. Sensors, 24(1), 132. https://doi.org/https://doi.org/10.3390/s24010132

Bisht, H. S., Dhauta, R., & Singh, J. (2019). Anthropometric and physiological profile of badminton pla-yers of Uttrakhand. International Journal of Yogic, Human Movement and Sports Sciences, 4(1), 665–669

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10, P10008. https://doi.org/https://doi.org/10.1088/1742-5468/2008/10/P10008

Buchheit, M., & Laursen, P. B. (2013a). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313–338. https://doi.org/https://doi.org/10.1007/s40279-013-0029-x

Buchheit, M., & Laursen, P. B. (2013b). High-intensity interval training, solutions to the programming puzzle. Sports Medicine, 43(5).

Cabello, D., & González-Badillo, J. J. (2003). Analysis of the characteristics of competitive badminton. British Journal of Sports Medicine, 37(1), 62–66. https://doi.org/https://doi.org/10.1136/bjsm.37.1.62

Dong, K., Yu, T., & Chun, B. (2023). Effects of core training on sport-specific performance of athletes: a meta-analysis of randomized controlled trials. Behavioral Sciences, 13(2), 148. https://doi.org/doi.org/10.3390/bs13020148

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2017). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Met-hods, 39(2), 175–191

Foster, C., Rodriguez, Marroyo, J. A., & De Koning, J. J. (2017). Monitoring training loads: The past, the present, and the future. International Journal of Sports Physiology and Performance, 12(2), 22–28. https://doi.org/https://doi.org/10.1123/IJSPP.2016-0388

Gabbett, T. J. (2016). The training injury prevention paradox: Should athletes be training smarter and harder. British Journal of Sports Medicine, 50(5), 273–280. https://doi.org/https://doi.org/10.1136/bjsports-2015-095788

Gaurav, V., Singh, M., & Singh, S. (2010). Anthropometric characteristics, somatotyping and body com-position of volleyball and basketball players. Journal of Physical Education and Sports Mana-gement, 1(3), 28–32

Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(2), 139–147

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd ed.).

Impellizzeri FM, SM, M., & AJ, C. (2019). Internal and external training load: 15 years on. Int J Sports Physiol Perform, 14(2), 270–273. https://doi.org/https:// doi.org/10.1123/ijspp.2018-0935.

Kibler, W. B., Press, J., & Sciascia, A. (2006). The role of core stability in athletic function. Sports Medi-cine, 36(3), 189–198. https://doi.org/https://doi.org/10.2165/00007256-200636030-00001

Maliki, A., MR, A., & Juahir H. (2018). The role of anthropometric, growth and maturity index (AGaMI) influen cing youth soccer relative performance. In: IOP Conference Series: Materials Science and Engineering. Epub Ahead of Print. https://doi.org/doi:10.1088/1757-899X/342/1/012056

Malina, R. M., Bouchard, C., &, & Bar-Or, O. (2004). Growth, maturation, and physical activity (2nd ed.). Human Kinetics

Martín-Martín, A, J.-P., & De-Torres I. (2022). Reliability study of inertial sensors Lis2Dh12 compared to Actigraph Gt9X: based on free code. JPersMed, 12(5), 749. https://doi.org/10.3390/jpm12050749

Yusof Mohamed, B. M., Musa, R. M., Nazarudin, M. N., Abdul Majeed, A. P. P., Raj, N. B., & Eswara-moorth, V. (2025). Anthropometric and fitness predictors of operational preparedness among Malaysian firefighters: a clustering and multivariate logistic regression approach. Retos, 69, 1326-1334. https://doi.org/10.47197/retos.v69.116579

Murray, A. (2017). Managing training load in adolescent athletes. International Journal of Sports Phy-siology and Performance, 12(2), 42-49. https://doi.org/https://doi.org/10.1123/ijspp.2016-0334.

Musa, R. M., Abdul Majeed, A. P., & Musawi Maliki, A. B. H., & Kosni, N. A. (2025). Personalized wor-kload management in badminton using a machine learning model. International Journal of Sports Science & Coaching, 20(3), 1226–1238. https://doi.org/10.1177/17479541251320539

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biome-trika, 78(3), 691–692. https://doi.org/https://doi.org/10.1093/biomet/78.3.691

Nikolaidis, P. T., Rosemann, T., & Knechtle, B. (2019). Performance and anthropometric characteristics in badminton players. Biology of Sports, 36(4), 371–378. https://doi.org/https://doi.org/10.5114/biolsport.2019.88762

Ooi, C. H., Tan, A., Ahmad, A., Kwong, K. W., Sompong, R., & Mohd Ghazali, K. A.,... Thompson, M. W. (2009). Physiological characteristics of elite and sub-elite badminton players. Journal of Sports Sciences, 27(14), 1591–1599. https://doi.org/doi.org/10.1080/02640410903352907

Phomsoupha, M., Berger, Q., & Laffaye, G. (2018). Multiple repeated sprint ability test for badminton players involving four changes of direction: validity and reliability. The Journal of Strength & Conditioning Research, 32(2), 423–431. https://doi.org/10.1519/JSC.0000000000002307

Phomsoupha, M., & Laffaye, G. (2015). The science of badminton: Game characteristics, anthropome-try, physiology, visual fitness and biomechanics. Sports Medicine, 45(4), 473–495. https://doi.org/https://doi.org/10.1007/s40279-014-0287-2

Phomsoupha, M., & Laffaye, G. (2020). Multiple repeated-sprint ability test with four changes of direc-tion for badminton players (Part 2): Predicting skill level with anthropometry, strength, shuttlecock, and displacement velocity. The Journal of Strength & Conditioning Research, 34(1), 203–211. https://doi.org/10.1519/JSC.0000000000002397.

Sasaki, S., Nagano, Y., & Ichikawa, H. (2022). Differences in high trunk acceleration during single-leg landing after an overhead stroke between junior and adolescent badminton athletes. Sports Biomechanics, 21(10), 1160–1175. https://doi.org/https://doi.org/10.1080/14763141.2020.1740310

Simpson, J. D., Howard, D. R., & Worringham, C. (2020). Monitoring training load in team sport: A com-parison of session rating of perceived exertion and player load. Journal of Strength and Condi-tioning Research, 34(2), 490–497. https://doi.org/https://doi.org/10.1519/JSC.0000000000002877

Soligard, T., Schwellnus, M., Alonso, J. M., Bahr, R., Clarsen, B., Dijkstra, H. P., Gabbett, T., Gleeson, M., Hägglund, M., Hutchinson, M. R., Rensburg, C. J. V., Khan, K. M., Meeusen, R., Orchard, J. W., Pluim, B. M., Raftery, M., & Budgett, R., Engebretsen, L. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Bri-tish Journal of Sports Medicine, 50(17), 1030–1041. https://doi.org/https://doi.org/10.1136/ bjsports-2016-096581

Steels, T., Van Herbruggen, B., Fontaine, J., De Pessemier, T., Plets, D., & Poorter, E. De. (2020). Badmi-nton activity recognition using accelerometer data. Sensors (Switzerland), 20(17), 1–16. https://doi.org/10.3390/s20174685

Taha, Z., Musa, R. M., Majeed, A. P. A., Alim, M. M., &, & Abdullah, M. R. (2018). The identification of high potential archers based on fitness and motor ability 177 variables: A Support Vector Ma-chine approach. Human Movement Science, 57(4), 184–193. https://doi.org/10.1016/j.humov.2017.12.008

Taylor, K., Chapman, D. W., Cronin, J., Newton, M. J., & Gill, N. D. (2020). Fatigue monitoring in high performance sport: A survey of current trends. Journal of Australian Strength and Conditioning, 28(2), 12–23

Vanrenterhgem, J., Nedergaard, N. J., Robinson, A., M., & Drust, B. (2017). Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med, 47(11), 2135–2142. https://doi.org/doi.org///doi.org/10.1123/IJSPP.2017-0208

Vartak, M., Subramanyam, H., Lee, W. E., Viswanathan, S., Husnoo, S., Madden, S., & Zaharia, M. (2016). ModelDB: a system for machine learning model management. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 1–3. https://doi.org/https://doi.org/10.1145/2939502.29395

Downloads

Publicado

10-09-2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Afzal, S., Bhaskar Raj, N., Muazu Musa, R., Binti Rahim, M., & Ishfaq Khan, M. (2025). Análise multivariada dos determinantes antropométricos da carga de treino no badminton juvenil. Retos, 71, 988-997. https://doi.org/10.47197/retos.v71.117465