O treino de intensidade moderada tem um melhor efeito nos fatores de crescimento do que o treino de alta intensidade em ratos

Autores

  • Laily Mita Andriana Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya https://orcid.org/0009-0002-9845-6577
  • Adi Pranoto Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0000-0003-4080-9245
  • Greta Ahmad Bukhori Atlas Sports Club Malang
  • Joseph Kenoly Nugroho Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang
  • Irmantara Subagio Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Nining Widyah Kusnanik Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Bayu Agung Pramono Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya
  • Dany Pramuno Putra Faculty of Vocational, Universitas Airlangga https://orcid.org/0009-0009-2650-9810
  • Muhamad Fauzi Antoni Department of Sport Coaching Education, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya https://orcid.org/0009-0001-3482-3297
  • Bekir Erhan Orhan Faculty of Sports Sciences, Istanbul Aydın University

DOI:

https://doi.org/10.47197/retos.v69.116181

Palavras-chave:

Cortisol, hormona do crescimento, melatonina, treino de intensidade moderada, treino de alta intensidade

Resumo

Introdução: É sabido que o exercício físico é um potente estímulo para o sistema endócrino. Diversos estudos anteriores examinaram os efeitos do exercício sobre o GH, a melatonina e o cortisol, separadamente. No entanto, até à data, nenhum estudo examinou diretamente as três hormonas simultaneamente num único protocolo de exercício, especialmente utilizando modelos controlados em ratos.
Objectivo: Este estudo tem como objectivo determinar o efeito do treino de intensidade moderada e do treino de alta intensidade nos determinantes do crescimento em ratos.
Metodologia: Foram utilizados 39 ratos machos, Rattus Norvegicus, estirpe Wistar, com 8 semanas de idade, com 160 ± 20 gramas, divididos aleatoriamente em três grupos: CON (n = 13, controlos não tratados), MIT (n = 13, treino de intensidade moderada, utilizando passadeira com velocidade de 14-16 m/min durante 30 minutos) e HIT (n = 13, treino de alta intensidade, utilizando passadeira com velocidade de 22-25 m/min durante 20 minutos). O tratamento foi realizado das 17:00 às 21:00 horas, com uma frequência de 3 vezes por semana, durante 12 semanas. A colheita de sangue foi realizada 24 horas após o último tratamento com exercício. As dosagens séricas de hormona de crescimento (GH), melatonina e cortisol foram realizadas por ELISA. Os dados foram analisados ​​por ANOVA unidirecional e teste post hoc de Tukey HSD com um nível de significância de 5%.
Resultados: Observámos os níveis de GH em CON (4,30 ± 0,29) pg/mL, MIT (4,55 ± 0,17) pg/mL, HIT (4,09 ± 0,28) pg/mL e (p < 0,001). Níveis de melatonina em CON (172,31 ± 15,86) pg/mL, MIT (193,54 ± 25,01) pg/mL, HIT (165,96 ± 15,44) pg/mL e (p < 0,05). Níveis de cortisol em CON (247,22 ± 50,26) ng/mL, MIT (212,82 ± 41,24) ng/mL e HIT (262,11 ± 19,56) ng/mL e (p < 0,05).
Conclusões: Estes achados sugerem que o treino de intensidade moderada tem um melhor efeito nos determinantes do crescimento em comparação com o treino de alta intensidade em ratos.

Referências

Caplin, A., Chen, F. S., Beauchamp, M. R., & Puterman, E. (2021). The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology, 131, 105336. https://doi.org/10.1016/j.psyneuen.2021.105336.

Celorrio San Miguel, A. M., Roche, E., Herranz-López, M., Celorrio San Miguel, M., Mielgo-Ayuso, J., & Fernández-Lázaro, D. (2024). Impact of melatonin supplementation on sports performance and circulating biomarkers in highly trained athletes: A systematic review of randomized CONrolled trials. Nutrients, 16(7), 1011. https://doi.org/10.3390/nu16071011.

D’Haese, S., Claes, L., De Laat, I., Van Campenhout, S., Deluyker, D., Heeren, E., Haesen, S., Lambrichts, I., Wouters, K., Schalkwijk, C., Hansen, D., Eijnde, B., & Bito, V. (2024). Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients, 16. https://doi.org/10.3390/nu16030431.

De Carvalho, C., Valentim, R., Navegantes, L., & Papoti, M. (2022). Comparison between low, moderate, and high intensity aerobic training with equalized loads on biomarkers and performance in rats. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-22958-8.

De Mendonça, M., Rocha, K., De Sousa, É., Pereira, B., Oyama, L., & Rodrigues, A. (2020). Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice.. American journal of physiology. Endocrinology and metabolism. https://doi.org/10.1152/ajpendo.00172.2020.

Dharmasanti, H. N., Rejeki, P. S., Sulistiawati, S., Halim, S., Antoni, M. F., Subagio, I., … Pranoto, A. (2024). Los efectos beneficiosos de seis semanas de ejercicio de natación sobre la hormona del creci-miento y los niveles de cortisol en ratones macho (Mus musculus) (The beneficial effects of six weeks of swimming exercise on growth hormone and cortisol levels in male mice (Mus musculus)). Retos, 59, 1126–1131. https://doi.org/10.47197/retos.v59.109107

Dhia, I., Maaloul, R., Marzougui, H., Ghroubi, S., Kallel, C., Driss, T., Elleuch, M., Ayadi, F., Turki, M., & Hammouda, O. (2022). Melatonin reduces muscle damage, inflammation and oxidative stress induced by exhaustive exercise in people with overweight/obesity.. Physiology international. https://doi.org/10.1556/2060.2022.00126.

Donato, J., Jr, Wasinski, F., Furigo, I. C., Metzger, M., & Frazão, R. (2021). Central Regulation of Metabolism by Growth Hormone. Cells, 10(1), 129. https://doi.org/10.3390/cells10010129.

Evans, C., LePard, K., Kwak, J., Stancukas, M., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., Antonopoulos, D., Smith, D., Chang, E., & Ciancio, M. (2014). Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0092193.

Faria, V. S., Manchado-Gobatto, F. B., Scariot, P. P. M., Zagatto, A. M., & Beck, W. R. (2022). Melatonin Potentiates Exercise-Induced Increases in Skeletal Muscle PGC-1α and Optimizes Glycogen Replenishment. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.803126.

Fujita, S., Abe, T., Drummond, M. J., et al. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 103(3), 903–910. https://doi.org/10.1152/japplphysiol.00195.2007.

Hacker, S., Keck, J., Reichel, T., Eder, K., Ringseis, R., Karsten Krüger, & Krüger, B. (2023). Biomarkers in Endurance Exercise: Individualized Regulation and Predictive Value. Translational Sports Medicine, 2023, 1–12. https://doi.org/10.1155/2023/6614990.

Kim, D. H., Kim, S. H., Kim, W. H., & Moon, C. R. (2013). The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. Journal of exercise nutrition & biochemistry, 17(4), 199–207. https://doi.org/10.5717/jenb.2013.17.4.199.

Kim, H., & Kim, D. (2014). Effect of Different Exercise Intensity on Blood Melatonin Density in Sleep Disordered Rats. , 9, 45-53. https://doi.org/10.13066/KSPM.2014.9.1.45.

Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339–361. https://doi.org/10.2165/00007256-200535040-00004.

Kruk, J., Aboul-Enein, B. H., & Duchnik, E. (2021). Exercise-induced oxidative stress and melatonin supplementation: current evidence. The journal of physiological sciences: JPS, 71(1), 27. https://doi.org/10.1186/s12576-021-00812-2.

Mashfufa, E., Marina, N., Sari, R., Marta, O., Setyowati, L., Aini, N., & Alifatin, A. (2022). Interaction Between Exercise and Sleep Quality Through Melatonin Synthesis: A Literature Review. KnE Medicine. https://doi.org/10.18502/kme.v2i3.11874.

Pranoto, A., Wahyudi, E., Prasetya, R.E., Fauziyah, S., Kinanti, R.G., Sugiharto, S., & Rejeki, P.S. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Comparative Exercise Physiology, 16(4), 325-332. https://doi.org/10.3920/CEP190063.

Puspita, D. I., Rejeki, P. S., Sari, G. M., Munir, M., Izzatunnisa, N., Muhammad, Halim, S., & Pranoto, A. (2024). The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus). Revista De Investigación E Innovación En Ciencias De La Salud, 7(1), 1-16. https://doi.org/10.46634/riics.314.

Raastad, T., Bjøro, T., & Hallén, J. (2000). Hormonal responses to high- and moderate-intensity strength exercise. European Journal of Applied Physiology, 82, 121-128. https://doi.org/10.1007/s004210050661.

Schroeder, A., Truong, D., Loh, D., Jordan, M., Roos, K., & Colwell, C. (2012). Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice. The Journal of Physiology, 590. https://doi.org/10.1113/jphysiol.2012.233676.

Soler-López, A., Moreno-Villanueva, A., Gómez-Carmona, C. D., & Pino-Ortega, J. (2024). The role of biomarkers in monitoring chronic fatigue among male professional team athletes: A systematic review. Sensors, 24(21), 6862. https://doi.org/10.3390/s24216862.

Taha, M. M., & Mounir, K. M. (2019). Acute response of serum cortisol to different intensities of resisted exercise in the elderly. Bulletin of Faculty of Physical Therapy, 24, 20–25. https://doi.org/10.4103/bfpt.bfpt_13_18.

Veldhuis, J.D., Weltman, A. (2001). Exercise and Growth Hormone Secretion. In: Giustina, A., Manelli, F. (eds) Growth Hormone And The Heart. Endocrine Updates, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1579-1_13.

Yoshida, T., & Delafontaine, P. (2020). Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9. https://doi.org/10.3390/cells9091970.

Zhang, L., Liu, X., Hu, J., Quan, H., Lee, S. K., Mallikarjuna Korivi, Wang, L., Li, T., & Li, W. (2024). Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway. Nutrition & Metabolism, 21(1). https://doi.org/10.1186/s12986-024-00888-8.

Downloads

Publicado

2025-06-13

Como Citar

Andriana, L. M., Pranoto, A., Bukhori, G. A., Nugroho, J. K., Subagio, I., Kusnanik, N. W., … Orhan, B. E. (2025). O treino de intensidade moderada tem um melhor efeito nos fatores de crescimento do que o treino de alta intensidade em ratos. Retos, 69, 619–627. https://doi.org/10.47197/retos.v69.116181

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.