Nível de troponina I esquelética como marcador de dano muscular esquelético após exercício excêntrico: uma revisão sistemática e meta-análise

Autores

  • Ida Rizqa Nuraini Maestría en Ciencias Médicas Básicas, Facultad de Medicina, Universidad Airlangga, Surabaya, Indonesia
  • Priscilia Pratami Intan Airlangga university https://orcid.org/0009-0005-2162-1281
  • Raden Argarini Medical Physiology and Biochemistry Department, Faculty of Medicine, Airlangga University, Surabaya, Indonesia https://orcid.org/0000-0002-5908-6270
  • Gadis Meinar Sari Medical Physiology and Biochemistry Department, Faculty of Medicine, Airlangga University, Surabaya, Indonesia https://orcid.org/0000-0002-9178-8926
  • Indri Ngesti Rahayu Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia

DOI:

https://doi.org/10.47197/retos.v70.113189

Palavras-chave:

Contração excêntrica, exercício excêntrico, EIMD, dano muscular, troponina I esquelética

Resumo

Introdução: Sabe-se que o exercício excêntrico causa dano muscular, denominado dano muscular induzido pelo exercício (DMIE), especialmente quando realizado pela primeira vez. A sTnI é um biomarcador altamente específico de lesão muscular esquelética, tendo a sua libertação sido demonstrada em vários estudos após exercício excêntrico.
Objectivo: O objectivo deste estudo foi explorar o curso temporal da libertação de sTnI após exercício excêntrico.
Métodos: Os artigos foram obtidos através das bases de dados Ovid, CINAHL, Scopus, Web of Science, Embase e PubMed. As pesquisas foram realizadas utilizando palavras-chave relacionadas com exercício excêntrico, dano muscular e troponina I esquelética. Este estudo seguiu as diretrizes PRISMA e foi registado no PROSPERO (CRD 42022385362).
Resultados: Foram incluídos três dos 6.030 estudos identificados, com um total de 27 participantes. Foram encontrados aumentos significativos dos níveis de sTnI às 6 horas (DMP = 2,43, IC 95% = 0,69 a 4,17, P = 0,006) e às 24 horas (DMP = 2,15, IC 95% = 1,32 a 2,99, P < 0,00001) após o exercício excêntrico. Às 96 horas após o exercício excêntrico, os níveis de sTnI não aumentaram significativamente (P = 0,07).
Conclusões: Os níveis de sTnI estavam elevados às 6 horas e mantiveram-se elevados até às 24 horas após o exercício excêntrico. Considerando o número limitado de estudos incluídos, são necessárias pesquisas futuras para melhorar a disponibilidade de dados e fornecer evidências sobre um curso temporal mais detalhado das alterações da sTnI.

Biografias do Autor

  • Ida Rizqa Nuraini, Maestría en Ciencias Médicas Básicas, Facultad de Medicina, Universidad Airlangga, Surabaya, Indonesia

    Postgraduate student in the Master Degree Program in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

  • Priscilia Pratami Intan, Airlangga university

    Postgraduate student in Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

  • Raden Argarini, Medical Physiology and Biochemistry Department, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

    Lecturer in:

    - Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

    - Master Degree in Sport, Exercise, and Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

    - Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

  • Gadis Meinar Sari, Medical Physiology and Biochemistry Department, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

    Lecturer in:

    -Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

    -Master Degree in Sport, Exercise, and Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

    -Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

  • Indri Ngesti Rahayu, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia

    Physiology Departement, Faculty of Medicine

Referências

Amir-Behghadami, M., & Janati, A. (2020). Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. In Emer-gency medicine journal : EMJ (Vol. 37, Issue 6, p. 387). https://doi.org/10.1136/emermed-2020-209567

Aujla, R., Zubair, M., & Patel, R. (2024). Creatine phosphokinase. StatPearls.

Avila-Quintero, S. E., Suescún-Carrero, S. H., González-Cetina, N. F., Zapata-Gil, S., & Afanador, D. F. (2024). Dosis-respuesta del entrenamiento excéntrico para prevenir lesiones en isquiotibiales en futbolistas: una revisión sistemática con metaanálisis (Dose-response of eccentric training to prevent hamstring injuries in soccer players: a systematic review with . Retos, 57, 8–17. https://doi.org/10.47197/retos.v57.104960

Bogomolova, A. P., & Katrukha, I. A. (2024). Troponins and Skeletal Muscle Pathologies. Biochemistry (Moscow), 89(12), 2083–2106. https://doi.org/10.1134/S0006297924120010

Chapman, D. W., Simpson, J. A., Iscoe, S., Robins, T., & Nosaka, K. (2013). Changes in serum fast and slow skeletal troponin I concentration following maximal eccentric contractions. Journal of Science and Medicine in Sport, 16(1), 82–85. https://doi.org/10.1016/j.jsams.2012.05.006

Chen, T. C., Liu, H. W., Russell, A., Barthel, B. L., Tseng, K. W., Huang, M. J., Chou, T. Y., & Nosaka, K. (2020). Large increases in plasma fast skeletal muscle troponin I after whole-body eccentric exercises. Journal of Science and Medicine in Sport, 23(8), 776–781. https://doi.org/10.1016/j.jsams.2020.01.011

Clerico, A., Zaninotto, M., Padoan, A., Masotti, S., Musetti, V., Prontera, C., Ndreu, R., Zucchelli, G., Pas-sino, C., Migliardi, M., & Plebani, M. (2019). Evaluation of analytical performance of immunoas-say methods for cTnI and cTnT: From theory to practice. Advances in Clinical Chemistry, 93, 239–262. https://doi.org/10.1016/bs.acc.2019.07.005

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (N. . Hillsdale (Ed.); 2nd ed.). Erlbaum Assocciates.

De Matteis, A., dell’Aquila, M., Maiese, A., Frati, P., La Russa, R., Bolino, G., & Fineschi, V. (2019). The Troponin-I fast skeletal muscle is reliable marker for the determination of vitality in the suicide hanging. Forensic Science International, 301, 284–288. https://doi.org/10.1016/j.forsciint.2019.05.055

Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric Exercise: Physiological Characteris-tics and Acute Responses. Sports Medicine (Auckland, N.Z.), 47(4), 663–675. https://doi.org/10.1007/s40279-016-0624-8

Goldstein, Richard A. (2017). Skeletal Muscle Injury Biomarkers: Assay Qualification Efforts and Trans-lation to the Clinic. Toxicologic Pathology, 45(7), 943–951. https://doi.org/10.1177/0192623317738927

Hall, J. (2016). Guyton and Hall Textbook of Medical Physiology (13th ed.). Elsevier Inc.

Hody, S., Croisier, J.-L., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric Muscle Contractions: Risks and Benefits. Frontiers in Physiology, 10, 536. https://doi.org/10.3389/fphys.2019.00536

Joanna Briggs Institute. (2017). Checklist for systematic reviews and research syntheses. https://jbi.global/critical-appraisal-tools

Li, M., Gao, Q., & Yu, T. (2023). Kappa statistic considerations in evaluating inter-rater reliability bet-ween two raters: which, when and context matters. In BMC cancer (Vol. 23, Issue 1, p. 799). https://doi.org/10.1186/s12885-023-11325-z

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282.

Meng, Z., Wang, J., Lin, L., & Wu, C. (2024). Sensitivity analysis with iterative outlier detection for sys-tematic reviews and meta-analyses. Statistics in Medicine, 43(8), 1549–1563. https://doi.org/10.1002/sim.10008

Nair, A. S., & Borkar, N. (2024). Sensitivity and subgroup analysis in a meta-analysis - What we should know? Indian Journal of Anaesthesia, 68(10), 922–924. https://doi.org/10.4103/ija.ija_623_24

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210. https://doi.org/10.1186/s13643-016-0384-4

Review Manager (RevMan) (5.4.1). (2020). The Cochrane Collaboration. revman.cochrane.org

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Sherwood, L. (2018). Fisiologi Manusia dari Sistem ke Sel. Human Physiology: From Cells to System, 1–999.

Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., & Puschendorf, B. (2001). Release of muscle proteins after downhill running in male and female subjects. Scandinavian Journal of Medicine and Science in Sports, 11(1), 28–32. https://doi.org/10.1034/j.1600-0838.2001.011001028.x

Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., & Puschendorf, B. (1997a). Skeletal troponin I as a marker of exercise-induced muscle damage. Journal of Ap-plied Physiology, 83(4), 1076–1082. https://doi.org/10.1152/jappl.1997.83.4.1076

Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., & Puschendorf, B. (1997b). Skeletal troponin I as a marker of exercise-induced muscle damage. Journal of Ap-plied Physiology (Bethesda, Md. : 1985), 83(4), 1076–1082. https://doi.org/10.1152/jappl.1997.83.4.1076

Sorichter, S., Mair, J., Koller, A., Müller, E., Kremser, C., Judmaier, W., Haid, C., Rama, D., Calzolari, C., & Puschendorf, B. (1997). Skeletal muscle troponin I release and magnetic resonance imaging signal intensity changes after eccentric exercise-induced skeletalmuscle injury. Clinica Chimica Acta, 262(1–2), 139–146. https://doi.org/10.1016/S0009-8981(97)06543-1

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Research Ed.), 366, l4898. https://doi.org/10.1136/bmj.l4898

Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Re-search, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371

Suzuki, T., Hashisdate, H., Fujisawa, Y., Yatsunami, M., Ota, T., Shimizu, N., & Betsuyaku, T. (2021). Re-liability of measurement using Image J for reach distance and movement angles in the functio-nal reach test. Journal of Physical Therapy Science, 33(2), 112–117. https://doi.org/10.1589/jpts.33.112

Sweeney, H. L., & Hammers, D. W. (2018). Muscle Contraction. Cold Spring Harbor Perspectives in Bio-logy, 10(2). https://doi.org/10.1101/cshperspect.a023200

Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Re-search Synthesis Methods, 1(2), 112–125. https://doi.org/10.1002/jrsm.11

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Metho-dology, 14(1), 135. https://doi.org/10.1186/1471-2288-14-135

Warrens, M. J. (2015). Five Ways to Look at Cohen’™s Kappa. Journal of Psychology & Psychotherapy, 05(04), 8–11. https://doi.org/10.4172/2161-0487.1000197

Wesselowski, S., Lidbury, J., Saunders, A. B., Gordon, S. G., Suchodolski, J. S., & Steiner, J. M. (2023). Analytical validation, sample stability, and clinical evaluation of a new high-sensitivity cardiac troponin I immunoassay for use in dogs, with comparison to a previous ultrasensitive assay. PloS One, 18(7), e0288801. https://doi.org/10.1371/journal.pone.0288801

Willoughby, D. S., McFarlin, B., & Bois, C. (2003). Interleukin-6 expression after repeated bouts of ec-centric exercise. International Journal of Sports Medicine, 24(1), 15–21. https://doi.org/10.1055/s-2003-37197

Willoughby, D. S., Taylor, M., & Taylor, L. (2003). Glucocorticoid Receptor and Ubiquitin Eccentric Exercise. Medicine and Science in Sports and Exercise, 35(2), 2023–2031. https://doi.org/10.1249/01.MSS.0000099100.83796.77

Ying, J., Cen, X., & Yu, P. (2021). Effects of Eccentric Exercise on Skeletal Muscle Injury: From An Ul-trastructure Aspect: A Review. Physical Activity and Health, 6(1), 15–20. https://doi.org/10.5334/PAAH.67

Zafar Gondal, A., Foris, L. A., & Richards, J. R. (2022). Serum Myoglobin.

Downloads

Publicado

06/24/2025

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Como Citar

Rizqa Nuraini, I., Pratami Intan, P., Argarini, R., Meinar Sari, G., & Ngesti Rahayu, I. (2025). Nível de troponina I esquelética como marcador de dano muscular esquelético após exercício excêntrico: uma revisão sistemática e meta-análise. Retos, 70, 62-74. https://doi.org/10.47197/retos.v70.113189