The role of neurovisualization in monitoring stroke risk among athletes: a review

Authors

  • Bauyrzhan Omarov Narxoz University
  • Akbayan Aliyeva

DOI:

https://doi.org/10.47197/retos.v70.116821

Keywords:

Neurovisualization, stroke, athletes, artificial intelligence, imaging biomarkers

Abstract

Introduction: this study addressed the emerging role of neurovisualization in assessing and mitigating stroke risk among athletes, a population increasingly exposed to neurovascular stress due to intense physical activity. the subject gained relevance with the growing recognition of subclinical cerebrovascular changes in sports contexts.

Objective: the objective of the research was to explore the integration of advanced neuroimaging techniques and artificial intelligence to enhance early detection, longitudinal monitoring, and risk prediction of cerebrovascular events in athletic populations.

Methodology: a systematic literature review was conducted, focusing on studies that applied functional magnetic resonance imaging, diffusion tensor imaging, computed tomography angiography, and other modalities in combination with predictive analytics and machine learning models. inclusion criteria were applied to filter relevant research involving athletes and cerebrovascular monitoring.

Results: the main results indicated that imaging biomarkers such as microbleeds, perfusion deficits, and white matter disruptions could be effectively detected and interpreted using artificial intelligence models. wearable data integrated with neuroimaging further enhanced the precision of predictive assessments.

Discussion: the findings were consistent with previous studies that supported the use of multimodal imaging and computational tools in stroke risk evaluation. however, data heterogeneity and algorithmic transparency were identified as persistent challenges across the reviewed literature.

Conclusions: It is concluded that the integration of neurovisualization with predictive analytics offers a promising framework for proactive brain health management in athletes and should be further developed and standardized in clinical practice.

References

Alekseeva, T. M., Topuzova, M. P., Kulikov, V. P., Kovzelev, P. D., Kosenko, M. G., & Tregub, P. P. (2024). Hypercapnic hypoxia as a rehabilitation method for patients after ischemic stroke. Neurological Research, 46(8), 695-705. https://doi.org/10.1080/01616412.2024.2343510

Altmann, S., Grauhan, N. F., Brockstedt, L., Kondova, M., Schmidtmann, I., Paul, R., ... & Othman, A. E. (2024). Ultrafast brain MRI with deep learning reconstruction for suspected acute ischemic stroke. Radiology, 310(2), e231938. https://doi.org/10.1148/radiol.231938

Ashikuzzaman, M., Huang, J., Bonwit, S., Etemadimanesh, A., Raghavan, P., & Bell, M. A. L. (2024, May). Deep learning-based displacement tracking for post-stroke myofascial shear strain quantifica-tion. In 2024 IEEE International Symposium on Biomedical Imaging (ISBI) (pp. 1-4). IEEE. https://doi.org/10.1109/ISBI56570.2024.10635186

Baradaran, H., Culleton, S., Stoddard, G., Alexander, M. D., Romero, J. R., Hadley, J. R., ... & McNally, J. S. (2023). Association between high-risk extracranial carotid plaque and covert brain infarctions and cerebral microbleeds. Neuroradiology, 65(2), 287-295. https://doi.org/10.1007/s00234-022-03062-0

Benli, M. D., Güven, B., Güven, H., & Conkbayır, I. (2021). Silent brain infarcts and white matter lesions in patients with asymptomatic carotid stenosis. Acta Neurologica Belgica, 121, 983-991. https://doi.org/10.1007/s13760-020-01517-w

Borsos, B., Allaart, C. G., & van Halteren, A. (2024). Predicting stroke outcome: a case for multimodal deep learning methods with tabular and CT perfusion data. Artificial Intelligence in Medicine, 147, 102719. https://doi.org/10.1016/j.artmed.2023.102719

Cherevko, A. A., Gologush, T. Y. S., & Ostapenko, V. V. (2021). Search for an Optimal Solution of the Problem of Arteriovenous Malformation Embolization by the Particle Swarm Method. Journal of Applied Mechanics and Technical Physics, 62, 530-541. https://doi.org/10.1134/S0021894421040027

Di Camillo, F., Grimaldi, D. A., Cattarinussi, G., Di Giorgio, A., Locatelli, C., Khuntia, A., ... & Sambataro, F. (2024). Magnetic resonance imaging–based machine learning classification of schizophrenia spectrum disorders: a meta‐analysis. Psychiatry and clinical neurosciences, 78(12), 732-743.

Dobrynina, L. A., Shamtieva, K. V., Kremneva, E. I., Zabitova, M. R., Akhmetzyanov, B. M., Gnedovskaya, E. V., & Krotenkova, M. V. (2022). Daily blood pressure profile and blood–brain barrier perme-ability in patients with cerebral small vessel disease. Scientific Reports, 12(1), 7723. https://doi.org/10.1038/s41598-022-11172-1

Enyagina, I., Polyakov, A., & Kokovin, D. (2022, September). Medical IT service for the detection of neurocognitive pathologies based on the results of an MRI scan of the human brain. In 2022 Ivannikov Memorial Workshop (IVMEM) (pp. 15-19). IEEE. https://doi.org/10.1109/IVMEM57067.2022.9983966

Gologush, T. Y. S., Ostapenko, V. V., & Cherevko, A. A. (2021). Mathematical modeling of embolization of arteriovenous malformations with overflows on the basis of the two-phase filtering. Compu-tational Mathematics and Mathematical Physics, 61, 1546-1558. https://doi.org/10.1134/S0965542521090104

Gutierrez, A., Amador, K., Winder, A., Wilms, M., Fiehler, J., & Forkert, N. D. (2024). Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischem-ic stroke. Computerized Medical Imaging and Graphics, 114, 102376. https://doi.org/10.1016/j.compmedimag.2024.102376

Hao, S., Wang, Q., Tang, B., Wu, Z., Yang, T., & Tang, J. (2021). CDKL5 deficiency augments inhibitory input into the dentate gyrus that can be reversed by deep brain stimulation. Journal of Neuro-science, 41(43), 9031-9046. https://doi.org/10.1523/JNEUROSCI.1010-21.2021

Hopker, J. G., Griffin, J. E., Hinoveanu, L. C., Saugy, J., & Faiss, R. (2024). Competitive performance as a discriminator of doping status in elite athletes. Drug Testing and Analysis, 16(5), 473-481.

Huang, J., Biessels, G. J., de Leeuw, F. E., Ii, Y., Skoog, I., Mok, V., ... & Hilal, S. (2024). Cerebral microin-farcts revisited: detection, causes, and clinical relevance. International Journal of Stroke, 19(1), 7-15. https://doi.org/10.1177/17474930231187979

Ince, S., Kunduracioglu, I., Algarni, A., Bayram, B., & Pacal, I. (2025). Deep learning for cerebral vascu-lar occlusion segmentation: a novel ConvNeXtV2 and GRN-integrated U-Net framework for dif-fusion-weighted imaging. Neuroscience, 574, 42-53. https://doi.org/10.1016/j.neuroscience.2025.04.010

Jimenez‐Mesa, C., Ramirez, J., Yi, Z., Yan, C., Chan, R., Murray, G. K., ... & Suckling, J. (2024). Machine learning in small sample neuroimaging studies: Novel measures for schizophrenia analysis. Human Brain Mapping, 45(5), e26555.

Kalashnikova, L. A. (2022). Reversible Cerebral Vasoconstriction Syndrome and Its Complications. Human Physiology, 48(8), 984-993. https://doi.org/10.1134/S036211972208014X

Karamesinis, A., Sillitoe, R. V., & Kouzani, A. Z. (2021). Wearable peripheral electrical stimulation de-vices for the reduction of essential tremor: a review. IEEE Access, 9, 80066-80076. https://doi.org/10.1109/ACCESS.2021.3084819

Kim, D. W., Park, J. E., Kim, M. J., Byun, S. H., Jung, C. I., Jeong, H. M., ... & Baek, S. J. (2024). Automatic assessment of upper extremity function and mobile application for self-administered stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 652-661. https://doi.org/10.1109/TNSRE.2024.3358497

Kim, J. H., Chen, W., Chao, E. S., Chen, H., & Xue, M. (2021). Glutamatergic and GABAergic neurons me-diate distinct neurodevelopmental phenotypes of STXBP1 encephalopathy. bioRxiv, 2021-07. https://doi.org/10.1101/2021.07.13.452234

Kim, J. H., Chen, W., Chao, E. S., Rivera, A., Kaku, H. N., Jiang, K., ... & Xue, M. (2024). GABAer-gic/glycinergic and glutamatergic neurons mediate distinct neurodevelopmental phenotypes of STXBP1 encephalopathy. Journal of Neuroscience, 44(14). https://doi.org/10.1523/JNEUROSCI.1806-23.2024

Koska, I. O., Selver, M. A., Gelal, F., Uluc, M. E., Çetinoğlu, Y. K., Yurttutan, N., ... & Dicle, O. (2024). Voxel level dense prediction of acute stroke territory in DWI using deep learning segmentation mod-els and image enhancement strategies. Japanese journal of radiology, 42(9), 962-972. https://doi.org/10.1007/s11604-024-01582-8

Lange, A., Somov, A., Stepanov, A., & Burnaev, E. (2021). Building a behavioral profile and assessing the skill of video game players. IEEE Sensors Journal, 22(1), 481-488.

Lavrentev, S. N., Petrova, A. S., Serova, O. F., Vishnyakova, P., Kondratev, M. V., Gryzunova, A. S., ... & Silachev, D. N. (2024). Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review. Children, 11(5), 591. https://doi.org/10.3390/children11050591

Li, Y., & Zhong, Z. (2024). Decoding the application of deep learning in neuroscience: a bibliometric analysis. Frontiers in Computational Neuroscience, 18, 1402689.

Lin, M. P., Demirer, M., Middlebrooks, E. H., Tawk, R. G., Erben, Y. M., Mateti, N. R., ... & Meschia, J. F. (2023). Greater burden of white matter lesions and silent infarcts ipsilateral to carotid stenosis. Journal of Stroke and Cerebrovascular Diseases, 32(9), 107287. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107287

Lin, P. J., Li, W., Zhai, X., Sun, J., Pan, Y., Ji, L., & Li, C. (2024). AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states. Neurocomputing, 585, 127622. https://doi.org/10.1016/j.neucom.2024.127622

Liu, Y., Shah, P., Yu, Y., Horsey, J., Ouyang, J., Jiang, B., ... & Zaharchuk, G. (2024). A clinical and imaging fused deep learning model matches expert clinician prediction of 90-day stroke outcomes. American Journal of Neuroradiology, 45(4), 406-411. https://doi.org/10.3174/ajnr.A8140

Luo, J., Dai, P., He, Z., Huang, Z., Liao, S., & Liu, K. (2024). Deep learning models for ischemic stroke lesion segmentation in medical images: a survey. Computers in biology and medicine, 108509. https://doi.org/10.1016/j.compbiomed.2024.108509

Ma, M., Ganapathi, M., Zheng, Y., Tan, K. L., Kanca, O., Bove, K. E., ... & Bellen, H. J. (2024). Homozygous missense variants in YKT6 result in loss of function and are associated with developmental de-lay, with or without severe infantile liver disease and risk for hepatocellular carcinoma. Genet-ics in medicine, 26(7), 101125. https://doi.org/10.1016/j.gim.2024.101125

Martín Vicario, C., Rodríguez Salas, D., Maier, A., Hock, S., Kuramatsu, J., Kallmuenzer, B., ... & Muehlen, I. (2024). Uncertainty-aware deep learning for trustworthy prediction of long-term outcome af-ter endovascular thrombectomy. Scientific Reports, 14(1), 5544. https://doi.org/10.1038/s41598-024-55761-8

Matsulevits, A., Coupé, P., Nguyen, H. D., Talozzi, L., Foulon, C., Nachev, P., ... & Thiebaut de Schotten, M. (2024). Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms. Brain Communications, 6(5), fcae338. https://doi.org/10.1093/braincomms/fcae338

McClean, Z. J., Pasanen, K., Lun, V., Charest, J., Herzog, W., Werthner, P., ... & Jordan, M. J. (2024). A Biopsychosocial Model for understanding training load, fatigue, and Musculoskeletal Sport In-jury in University Athletes: a scoping review. The Journal of Strength & Conditioning Research, 38(6), 1177-1188.

McNamara, I. A., King, S. E., Corbin, W. R., & Fromme, K. (2022). A longitudinal examination of rela-tions between competitive athletic participation, drinking norms, impulsivity, and sensation seeking and binge drinking throughout college. Psychology of Addictive Behaviors, 36(7), 837.

Mukhammadjonov, I. (2025). MODERN STANDARDS AND THEIR CONCEPTS IN TRANSIENT DISOR-DERS OF CEREBRAL CIRCULATION. Modern Science and Research, 4(3), 1649-1657. https://doi.org/10.5281/zenodo.15115964

Nunes, A. S., Yildiz Potter, İ., Mishra, R. K., Bonato, P., & Vaziri, A. (2024). A deep learning wearable-based solution for continuous at-home monitoring of upper limb goal-directed movements. Frontiers in Neurology, 14, 1295132. https://doi.org/10.3389/fneur.2023.1295132

Odusami, M., Maskeliūnas, R., Damaševičius, R., & Misra, S. (2024). Machine learning with multimodal neuroimaging data to classify stages of Alzheimer’s disease: a systematic review and meta-analysis. Cognitive Neurodynamics, 18(3), 775-794.

Omarov, B., Omarov, B., Rakhymzhanov, A., Niyazov, A., Sultan, D., & Baikuvekov, M. (2024). Develop-ment of an artificial intelligence-enabled non-invasive digital stethoscope for monitoring the heart condition of athletes in real-time. Retos, 60, 1169–1180. https://doi.org/10.47197/retos.v60.108633

Omarov, N., Omarov, B., Azhibekova, Z., & Omarov, B. (2024). Applying an augmented reality game-based learning environment in physical education classes to enhance sports motivation. Retos, 60, 269–278. https://doi.org/10.47197/retos.v60.109170

Parvathy, R., Arunachalam, R., Damodaran, S., Al-Razgan, M., & Ali, Y. A. (2025). An intellectual autism spectrum disorder classification framework in healthcare industry using ViT-based adaptive deep learning model. Biomedical Signal Processing and Control, 106, 107737.

Peng, J., Ghosh, D., Zhang, F., Yang, L., Wu, J., Pang, J., ... & Jiang, Y. (2022). Advancement of epigenetics in stroke. Frontiers in Neuroscience, 16, 981726. https://doi.org/10.3389/fnins.2022.981726

Polamuri, S. R. (2024). Stroke detection in the brain using MRI and deep learning models. Multimedia Tools and Applications, 1-18. https://doi.org/10.1007/s11042-024-19318-1

Popugaev, K., Petrikov, S., & Abudeev, S. (2024). Central nervous system infection. In Neurological and Neurosurgical Emergencies (pp. 469-492). Academic Press. https://doi.org/10.1016/B978-0-443-19132-9.00020-0

Ramesh, S. H., Ouskine, A., Khorasani, E., Ebrahimipour, M., Finestone, H., Chan, A. D., & Rajabiyazdi, F. (2024, June). A Data Visualization Tool for Patients and Healthcare Providers to Communicate during Inpatient Stroke Rehabilitation. In Proceedings of the 50th Graphics Interface Confer-ence (pp. 1-14).

Saleem, M. A., Javeed, A., Akarathanawat, W., Chutinet, A., Suwanwela, N. C., Asdornwised, W., ... & Kaewplung, P. (2024). Innovations in stroke identification: A machine learning-based diagnos-tic model using neuroimages. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3369673

Sarada, M. (2022). Basics and descriptions of different biomedical signals. In AI-Enabled Smart Healthcare Using Biomedical Signals (pp. 1-25). IGI Global.

Sawan, A., Awad, M., Qasrawi, R., & Sowan, M. (2024). Hybrid deep learning and metaheuristic model based stroke diagnosis system using electroencephalogram (eeg). Biomedical Signal Processing and Control, 87, 105454. https://doi.org/10.1016/j.bspc.2023.105454

Shendyapina, M., Su, I. F., & Weekes, B. (2022). Cognitive assessment and rehabilitation tools for stroke and dementia: An online survey of Russian speaking clinicians. Applied Neuropsychology: Adult, 29(3), 295-314.

Simons, C., Martin, L. A., Balcombe, L., Dunn, P. K., & Clark, R. A. (2021). Mental health impact on at-risk high-level athletes during COVID-19 lockdown: A pre-, during and post-lockdown longitu-dinal cohort study of adjustment disorder. Journal of Science and Medicine in Sport, 24(4), 329-331.

Singh, S., Dawar, D., Mehmood, E., Pandian, J. D., Sahonta, R., Singla, S., ... & Mahadevappa, M. (2024). Determining diagnostic utility of EEG for assessing stroke severity using deep learning models. Biomedical Engineering Advances, 7, 100121. https://doi.org/10.1016/j.bea.2024.100121

Smerdov, A., Somov, A., Burnaev, E., Zhou, B., & Lukowicz, P. (2021). Detecting video game player burnout with the use of sensor data and machine learning. IEEE Internet of Things Journal, 8(22), 16680-16691. https://doi.org/10.1109/JIOT.2021.3074740

Steffen, K., & Engebretsen, L. (2015). Injury and illness surveillance among Olympic athletes: summary of the 2010 winter, and the 2008 and 2012 summer Olympic Games. Sports Injuries and Pre-vention, 39-50.

Taylor, J. L., Barnes, J. N., & Johnson, B. D. (2022). The utility of high intensity interval training to im-prove cognitive aging in heart disease patients. International journal of environmental re-search and public health, 19(24), 16926.

Van Belle, E., Debry, N., Vincent, F., Kuchcinski, G., Cordonnier, C., Rauch, A., ... & Susen, S. (2022). Cer-ebral microbleeds during transcatheter aortic valve replacement: a prospective magnetic reso-nance imaging cohort. Circulation, 146(5), 383-397. https://doi.org/10.1161/CIRCULATIONAHA.121.057145

van Voorst, H., Pitkänen, J., van Poppel, L., de Vries, L., Mojtahedi, M., Martou, L., ... & Caan, M. W. (2024). Deep learning-based white matter lesion volume on CT is associated with outcome af-ter acute ischemic stroke. European Radiology, 34(8), 5080-5093. https://doi.org/10.1007/s00330-024-10584-z

Vinogradova, O. L., Tomilovskaya, E. S., & Kozlovskaya, I. B. (2021). Gravity as a factor in evolutionary adaptation of animals to living on the earth. Human Physiology, 47(7), 716-7340. https://doi.org/10.1134/S0362119721070124

Wu, Z., Zhang, X., Li, F., Wang, S., & Li, J. (2024). A feature-enhanced network for stroke lesion segmen-tation from brain MRI images. Computers in Biology and Medicine, 174, 108326. https://doi.org/10.1016/j.compbiomed.2024.108326

Yang, T. H., Su, Y. Y., Tsai, C. L., Lin, K. H., Lin, W. Y., & Sung, S. F. (2024). Magnetic resonance imaging-based deep learning imaging biomarker for predicting functional outcomes after acute ischem-ic stroke. European journal of radiology, 174, 111405. https://doi.org/10.1016/j.ejrad.2024.111405

Yang, Y., & Guo, Y. (2024). Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network. Frontiers in Neurology, 15, 1394879. https://doi.org/10.3389/fneur.2024.1394879

Yokoyama, R., Kanzaki, Y., Watanabe, T., Yamamura, K., Komori, T., Takeda, Y., ... & Hoshiga, M. (2022). Prevalence and risk factors of silent cerebral microbleeds in patients with coronary ar-tery disease. Journal of Stroke and Cerebrovascular Diseases, 31(1), 106211. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.1062

Yu, K., Fu, L., Chao, Y., Zeng, X., Zhang, Y., Chen, Y., ... & Xiao, Y. (2025). Deep learning enhanced near Infrared-II imaging and Image-Guided small interfering ribonucleic acid therapy of ischemic stroke. ACS nano, 19(10), 10323-10336. https://pubs.acs.org/doi/10.1021/acsnano.4c18035

Zhang, M., Treder, M., Marshall, D., & Li, Y. (2024). Explaining the predictions of kernel SVM models for neuroimaging data analysis. Expert Systems With Applications, 251, 123993.

Zhao, Z., Zhang, Y., Su, J., Yang, L., Pang, L., Gao, Y., & Wang, H. (2024). A comprehensive review for artificial intelligence on neuroimaging in rehabilitation of ischemic stroke. Frontiers in Neurol-ogy, 15, 1367854. https://doi.org/10.3389/fneur.2024.1367854

Zigmantovich, A. S., Oknina, L. B., Kopachka, M. M., Masherow, E. L., & Alexandrova, E. V. (2021). Func-tional wavelet connectivity in resting state reflects consciousness recovery in patients with se-vere traumatic brain injury. Human Physiology, 47(2), 128-136. https://doi.org/10.1134/S0362119721020146

Downloads

Published

2025-08-05

Issue

Section

Theoretical systematic reviews and/or meta-analysis

How to Cite

Omarov, B., & Aliyeva, A. (2025). The role of neurovisualization in monitoring stroke risk among athletes: a review. Retos, 70, 1153-1168. https://doi.org/10.47197/retos.v70.116821