Effect of aerobic training on glycemic profile in older adults with type 2 diabetes: a systematic review
DOI:
https://doi.org/10.47197/retos.v71.116213Keywords:
Aerobic training, high-intensity interval training, moderate-intensity continuous training, older adults, type 2 diabetes mellitusAbstract
Introduction: Aerobic exercise is widely recommended in studies and guidelines for the prevention and control of Type 2 Diabetes Mellitus (T2DM).
Objective: The objective of this systematic review is to evaluate the effects of various aerobic training modalities to determine if their application in different activities has a greater impact on the glycemic profile in older adults with T2DM.
Metodology: A systematic review following the PRISMA method was conducted to assess the effects of aerobic training on blood markers of glycated hemoglobin (HbA1c),insulin resistance (HOMA-IR), and fasting plasma glucose (FPG) in older adults with T2DM. Searches were performed in the PubMed, Scopus, SciELO, and Web of Science (WoS) databases. In total, 387 participants diagnosed with T2DM were analyzed.
Result: The literature synthesis results showed that both Moderate-Intensity Continuous Training (MICT) and High-Intensity Interval Training (HIIT) significantly reduced blood markers following the intervention. Six studies employing MICT reported decreases in HbA1c, three in HOMA-IR, and five in FPG. Among the studies utilizing HIIT, three reported significant reductions in HbA1c, one in HOMA-IR, and one in FPG. Additionally, two studies found that HIIT produced significant improvements compared to MICT.
Conclusions: This systematic review suggests that both MICT and HIIT are effective in improving the glycemic profile in older adults with diabetes.
References
Baasch‐Skytte, T., Lemgart, C. T., Oehlenschläger, M. H., Petersen, P. E., Hostrup, M., Bangsbo, J., & Gunnarsson, T. P. (2020). Efficacy of 10‐20‐30 training versus moderate‐intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: A randomized controlled trial. Diabetes, Obesity and Metabolism, 22(5), 767–778. https://doi.org/10.1111/dom.13953
Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., & Sigal, R. J. (2001). Effects of Exercise on Glycemic Control and Body Mass in Type 2 Diabetes Mellitus. JAMA, 286(10), 1218. https://doi.org/10.1001/jama.286.10.1218
Braun, B., Eze, P., Stephens, B. R., Hagobian, T. A., Sharoff, C. G., Chipkin, S. R., & Goldstein, B. (2008). Impact of metformin on peak aerobic capacity. Applied Physiology, Nutrition, and Metabolism, 33(1), 61–67. https://doi.org/10.1139/H07-144
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J.-P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Gar-cia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., … Willumsen, J. F. (2020). World Health Organiza-tion 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955
Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
Coates, A. M., Joyner, M. J., Little, J. P., Jones, A. M., & Gibala, M. J. (2023). A Perspective on High-Intensity Interval Training for Performance and Health. Sports Medicine, 53(S1), 85–96. https://doi.org/10.1007/s40279-023-01938-6
Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Cas-torino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728
De Nardi, A. T., Tolves, T., Lenzi, T. L., Signori, L. U., & Silva, A. M. V. da. (2018). High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: A meta-analysis. Diabetes Research and Clinical Practice, 137, 149–159. https://doi.org/10.1016/j.diabres.2017.12.017
DiPietro, L., Dziura, J., Yeckel, C. W., & Neufer, P. D. (2006). Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. Journal of Ap-plied Physiology, 100(1), 142–149. https://doi.org/10.1152/japplphysiol.00474.2005
ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Cusi, K., Das, S. R., Gibbons, C. H., Giurini, J. M., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Kosiborod, M., Leon, J., Lyons, S. K., Murdock, L., on behalf of the American Diabetes Association (2023). Introduction and Methodology: Standards of Care in Diabetes-2023. Diabetes care, 46(Suppl 1), S1–S4. https://doi.org/10.2337/dc23-Sint
Feng, J., Zhang, Q., Chen, B., Chen, J., Wang, W., Hu, Y., Yu, J., & Huang, H. (2024). Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: A systematic review and meta-analysis. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1360998
Gallegos, L. I. F., Hernández, G. S. I. R., Mata, K. J. M., & Chávez, J. F. A. (2024). Más allá del control glucémico: Beneficios de la actividad física en la calidad de vida de personas con diabetes mellitus tipo 2: una revisión narrativa (Beyond glycemic control: benefits of physical activity on the quality of life of people with type 2 dia-betes mellitus: a narrative review). Retos, 53, 262-270. https://doi.org/10.47197/retos.v53.101811
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., Nieman, D. C., & Swain, D. P. (2011). Quantity and Quality of Exercise for Developing and Maintaining Cardi-orespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb
Haddad, E., Wells, G. A., Sigal, R. J., Boul, N. G., & Kenny, G. P. (2003). Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabeto-logia, 46(8), 1071–1081. https://doi.org/10.1007/s00125-003-1160-2
Jansson, A. K., Chan, L. X., Lubans, D. R., Duncan, M. J., & Plotnikoff, R. C. (2022). Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: a systematic review and meta-analysis. BMJ Open Diabetes Research & Care, 10(2), e002595. https://doi.org/10.1136/bmjdrc-2021-002595
Jelleyman, C., Yates, T., O’Donovan, G., Gray, L. J., King, J. A., Khunti, K., & Davies, M. J. (2015). The ef-fects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐analysis. Obesity Reviews, 16(11), 942–961. https://doi.org/10.1111/obr.12317
Jiang, Y., Tan, S., Wang, Z., Guo, Z., Li, Q., & Wang, J. (2020). Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in old-er people with type 2 diabetes. Journal of Exercise Science & Fitness, 18(1), 7–13. https://doi.org/10.1016/j.jesf.2019.08.003
Lazarevic, G., Antic, S., Cvetkovic, T., Vlahovic, P., Tasic, I., & Stefanovic, V. (2006). A physical activity programme and its effects on insulin resistance and oxidative defense in obese male patients with type 2 diabetes mellitus. Diabetes & Metabolism, 32(6), 583–590. https://doi.org/10.1016/S1262-3636(07)70312-9
Liubaoerjijin, Y., Terada, T., Fletcher, K., & Boulé, N. G. (2016). Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetologica, 53(5), 769–781. https://doi.org/10.1007/s00592-016-0870-0
Mitranun, W., Deerochanawong, C., Tanaka, H., & Suksom, D. (2014). Continuous vs interval training on glycemic control and macro‐ and microvascular reactivity in type 2 diabetic patients. Scan-dinavian Journal of Medicine & Science in Sports, 24(2). https://doi.org/10.1111/sms.12112
Molina-Sotomayor, E., Onetti-Onetti, W., Castillo-Rodríguez, A., & González-Jurado, J. A. (2020). Chang-es in Cognitive Function and in the Levels of Glycosylated Haemoglobin (HbA1c) in Older Women with Type 2 Diabetes Mellitus Subjected to a Cardiorespiratory Exercise Programme. Sustainability, 12(12), 5038. https://doi.org/10.3390/su12125038
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
Pan, B., Ge, L., Xun, Y., Chen, Y., Gao, C., Han, X., Zuo, L., Shan, H., Yang, K., Ding, G., & Tian, J. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 72. https://doi.org/10.1186/s12966-018-0703-3
Pandey, A., Suskin, N., & Poirier, P. (2017). The Impact of Burst Exercise on Cardiometabolic Status of Patients Newly Diagnosed With Type 2 Diabetes. Canadian Journal of Cardiology, 33(12), 1645–1651. https://doi.org/10.1016/j.cjca.2017.09.019
Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, Classification and Diagnosis of Diabetes Mellitus. Exper-imental and Clinical Endocrinology & Diabetes, 127(S 01), S1–S7. https://doi.org/10.1055/a-1018-9078
Robinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., & Little, J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. Journal of Applied Physiology, 119(5), 508–516. https://doi.org/10.1152/japplphysiol.00334.2015
Rohmansyah, N. A., Ka Praja, R., Phanpheng, Y., & Hiruntrakul, A. (2023). High-Intensity Interval Train-ing Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 60, 469580231172870. https://doi.org/10.1177/00469580231172870
Sampath Kumar, A., Maiya, A. G., Shastry, B. A., Vaishali, K., Ravishankar, N., Hazari, A., Gundmi, S., & Jadhav, R. (2019). Exercise and insulin resistance in type 2 diabetes mellitus: A systematic re-view and meta-analysis. Annals of Physical and Rehabilitation Medicine, 62(2), 98–103. https://doi.org/10.1016/j.rehab.2018.11.001
Stanton, K. M., Kienzle, V., Dinnes, D. L. M., Kotchetkov, I., Jessup, W., Kritharides, L., Celermajer, D. S., & Rye, K. (2022). Moderate‐ and High‐Intensity Exercise Improves Lipoprotein Profile and Cho-lesterol Efflux Capacity in Healthy Young Men. Journal of the American Heart Association: Car-diovascular and Cerebrovascular Disease, 11(12), e023386. https://doi.org/10.1161/JAHA.121.023386
Suntraluck, S., Tanaka, H., & Suksom, D. (2017). The Relative Efficacy of Land-Based and Water-Based Exercise Training on Macro- and Microvascular Functions in Older Patients With Type 2 Diabe-tes. Journal of Aging and Physical Activity, 25(3), 446–452. https://doi.org/10.1123/japa.2016-0193
Taghizadeh, M., Ahmadizad, S., & Naderi, M. (2018). Effects of endurance training on hsa-miR-223, P2RY12 receptor expression and platelet function in type 2 diabetic patients. Clinical Hem-orheology and Microcirculation, 68(4), 391–399. https://doi.org/10.3233/CH-170300
Tan, S., Du, P., Zhao, W., Pang, J., & Wang, J. (2018). Exercise Training at Maximal Fat Oxidation Intensi-ty for Older Women with Type 2 Diabetes. International Journal of Sports Medicine, 39(05), 374–381. https://doi.org/10.1055/a-0573-1509
Tauda, M., Cruzat Bravo, E., & Suárez Rojas, F. (2025). Entrenamiento interválico de alta intensidad versus entrenamiento continuo moderado en la rehabilitación cardiaca: Revisión Sistemática y Meta-análisis. Retos, 63, 433–458. https://doi.org/10.47197/retos.v63.110286
Terada, T., Friesen, A., Chahal, B. S., Bell, G. J., McCargar, L. J., & Boulé, N. G. (2013). Feasibility and pre-liminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Research and Clinical Practice, 99(2), 120–129. https://doi.org/10.1016/j.diabres.2012.10.019
Weston, K. S., Wisløff, U., & Coombes, J. S. (2014). High-intensity interval training in patients with life-style-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine, 48(16), 1227–1234. https://doi.org/10.1136/bjsports-2013-092576
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan Carlos Fuentealba Sánchez, Felipe Hermosilla Palma, Yesenia Olate Pasten, Tomás Reyes Amigo, Mauricio Díaz-Alvarado, Cristian Luarte Rocha, Nicolás Gómez-Álvarez, Iván Molina-Márquez, Nicolás Gómez-Álvarez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.