Age-related differences in mechanical and functional properties of knee flexor-extensor musculature
DOI:
https://doi.org/10.47197/retos.v72.116164Keywords:
Muscle Quality, Older Adults, Aging, Knee Flexor-Extensor CapacityAbstract
Introduction and Objective. The decline in muscle quality (MQ) with aging is associated with increased morbidity and mortality. Therefore, characterizing MQ in older adults (OA) is essential. The objective of this study was to characterize and compare MQ indicators of knee flexor-extensor muscles across different age groups.
Methodology. A total of 66 volunteers of both sexes were divided into three groups: young adults (22.1 ± 1.6 years), adults (49.9 ± 8.3 years), and older adults (71.0 ± 6.4 years). Maximum radial displacement (Dm) and contraction time (Tc) of the Rectus Femoris (RF) and Biceps Femoris (BF) were assessed, along with dynamometric variables of knee flexor-extensor isometric strength and power. Group differences were analyzed using ANOVA, and correlations between tensiomyographic and dynamometric variables were examined.
Results. Aging was associated with a decrease (p < 0.05) in isometric strength and power for both knee extension and flexion, and with a significant increase (p < 0.05) in RF Tc and a tendency to increase in BF Tc. Dm values of both muscles did not show significant differences (p > 0.05) between groups. For knee extension, a weak negative correlation (p < 0.05) was observed between both strength measures and RF Tc, and a weak positive correlation between these measures and RF Dm. For knee flexion, weak negative correlations (p < 0.05) were found between both strength modalities and BF Tc, with no correlations with BF Dm.
Conclusions. Tensiomyographic variables, particularly Dm, do not appear to be sensitive indicators for detecting age-related declines in MQ when analyzed in isolation. Additional indicators may be necessary to improve the accuracy of MQ assessment in older adults.
References
Asaka, T., & Wang, Y. (2008). Effects of aging on feedforward postural synergies. Journal of Human Kinetics, 20(2008), 63-70. https://doi.org/10.2478/v10078-008-0018-6
Axelrod, C. L., Dantas, W. S., & Kirwan, J. P. (2023). Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism, 146, 1-10. https://doi.org/10.1016/j.metabol.2023.155639
Brauer, A. G., Lima da Silva, A. E., Teixeira, J., Villarejo-Mayor, J. J., & Barauce- Bento, P. C. (2023). Muscle Architecture, Muscle Quality, and Neuromuscular Function of the Knee Extensor Muscle: A Comparison between Middle-aged and Older Endurance Runners. Journal of Physical Education & Sport, 23(7), 1794-1803. https://doi.org/0.7752/jpes.2023.07219
Calvo-Lobo, C., Díez-Vega, I., García-Mateos, M., Molina-Martín, J. J., Díaz-Ureña, G., & Rodríguez- Sanz, D. (2018). Relationship of the skin and subcutaneous tissue thickness in the tensiomyography response: a novel ultrasound observational study. Revista da Associação Médica Brasileira, 64(6), 549-553. https://doi.org/10.1590/1806-9282.64.06.549
Chai, J. H., Kim, C. H., & Bae, S. W. (2022). Comparison of thigh muscle characteristics between older and young women using tensiomyography [preprint]. bioRxiv. https://doi.org/10.1101/2022.08.05.502971
Chtourou, H., & Souissi, N. (2012). The effect of training at a specific time of day: a review. The Journal of Strength & Conditioning Research, 26(7), 1984-2005. https://doi.org/10.1519/JSC.0b013e31825770a7
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
D’Antona, G., Pellegrino, M. A., Adami, R., Rossi, R., Carlizzi, C. N., Canepari, M., Saltin, B., & Bottinelli, R. (2003). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. The Journal of Physiology, 552(2), 499–511. https://doi.org/10.1113/jphysiol.2003.046276
de Paula-Simola, R. Á., Harms, N., Raeder, C., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2015). Assessment of neuromuscular function after different strength training protocols using tensiomyography. The Journal of Strength & Conditioning Research, 29(5), 1339-1348. https://doi.org/10.1519/JSC.0000000000000768
Deschenes, R. M., Gaertner, J., & O’Reilly, S. (2013). The effects of sarcopenia on muscles with different recruitment patterns and myofiber profiles. Current Aging Science, 6(3), 266-272. https://doi.org/10.2174/18746098113066660035
Ditroilo, M., Hunter, A. M., Haslam, S., & De Vito, G. (2011). The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiological Measurement, 32(8), 1-30. https://doi.org/10.1088/09673334/32/8/020
Fabiani, E., Herc, M., Šimunič, B., Brix, B., Löffler, K., Weidinger, L., Ziegl, A., Kastner, P., Kapel, A., & Goswami, N. (2021). Correlation between timed up and go test and skeletal muscle tensiomyography in female nursing home residents. Journal of Musculoskeletal & Neuronal Interactions, 21(2), 247-254. https://pubmed.ncbi.nlm.nih.gov/34059569/
Faulkner, J. A., Larkin, L. M., Claflin, D. R., & Brooks, S. V. (2007). Age‐related changes in the structure and function of skeletal muscles. Clinical and Experimental Pharmacology and Physiology, 34(11), 1091-1096. https://doi.org/10.1111/j.1440-1681.2007.04752.x
Fragala, M. S., Kenny, A. M., & Kuchel, G. A. (2015). Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Medicine, 45(5), 641–658. https://doi.org/10.1007/s40279-015-0305-z
Frontera, W. R. (2017). Physiologic changes of the musculoskeletal system with aging: a brief review. Physical Medicine and Rehabilitation Clinics, 28(4), 705-711. https://doi.org/10.1016/j.pmr.2017.06.004
Haus, J. M., Carrithers, J. A., Trappe, S. W., & Trappe, T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. Journal of Applied Physiology, 103(6), 2068-2076. https://doi.org/10.1152/japplphysiol.00670.2007
Höök, P., Sriramoju, V., & Larsson, L. (2001). Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. American Journal of Physiology - Cell Physiology, 280(4), C782-C788. https://doi.org/10.1152/ajpcell.2001.280.4.C782
Labata-Lezaun, N., González-Rueda, V., Llurda-Almuzara, L., López-de-Celis, C., Rodríguez-Sanz, J., Cadellans-Arróniz, A., Bosch, J., & Pérez-Bellmunt, A. (2023). Correlation between physical performance and tensiomyographic and myotonometric parameters in older adults. Healthcare, 11(15), 1-11. https://doi.org/10.3390/healthcare11152169
Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. I., Thompson, W., Kirkland, J. L., & Sandri, M. (2019). Sarcopenia: aging-related loss of muscle mass and function. Physiological Reviews, 99(1), 427-511. https://doi.org/10.1152/physrev.00061.2017
Macgregor, L. J., Hunter, A. M., Orizio, C., Fairweather, M. M., & Ditroilo, M. (2018). Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Medicine, 48(7), 1607–1620. https://doi.org/10.1007/s40279-018-0912-6
Marzuca-Nassr, G. N., Alegría-Molina, A., San Martín-Calísto, Y., Artigas-Arias, M., Huard, N., Sapunar, J., Salazar, L. A. Verdijk, L. B., & van Loon, L. J. (2023). Muscle mass and strength gains following resistance exercise training in older adults 65–75 years and older adults above 85 years. International Journal of Sport Nutrition and Exercise Metabolism, 34(1), 11-19. https://doi.org/10.1123/ijsnem.2023-0087
Mohajer, B., Dolatshahi, M., Moradi, K., Najafzadeh, N., Eng, J., Zikria, B., Guermazi, A., & Demehri, S. (2022). Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data. Radiology, 305(1), 169-178. https://doi.org/10.1148/radiol.212771
Narici, M. V., & Maffulli, N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. British Medical Bulletin, 95(1), 139-159. https://doi.org/10.1152/japplphysiol.00433.2003
Pakosz, P., Konieczny, M., Domaszewski, P., Dybek, T., García-García, O., Gnoiński, M., & Skorupska, E. (2024). Muscle contraction time after caffeine intake is faster after 30 minutes than after 60 minutes. Journal of the International Society of Sports Nutrition, 21(1), 155-165. https://doi.org/10.1080/15502783.2024.2306295
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8(8), 457-465. https://doi.org/10.1038/nrendo.2012.49
Pišot, R., Narici, M. V., Šimunič, B., De Boer, M., Seynnes, O., Jurdana, M., Biolo, G., & Mekjavić, I. B. (2008). Whole muscle contractile parameters and thickness loss during 35-day bed rest. European Journal of Applied Physiology, 104, 409-414. https://doi.org/10.1007/s004210080698-6
Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: shifting perspectives. Sports, 9(9), 1-11. https://doi.org/10.3390/sports9090127
Pus, K., Paravlic, A. H., & Šimunič, B. (2023). The use of tensiomyography in older adults: a systematic review. Frontiers in Physiology, 14, 1213993. https://doi.org/10.3389/fphys.2023.1213993
Reid, K. F., & Fielding, R. A. (2012). Skeletal muscle power: a critical determinant of physical functioning in older adults. Exercise and Sport Sciences Reviews, 40(1), 4-12. https://doi.org/10.1097/JES.0b013e31823b5f13
Rodríguez-Matoso, D., García-Manso, J. M., Sarmiento, S., De Saa, Y., Vaamonde, D., Rodríguez- Ruiz, D., & da Silva-Grigoletto, M. E. (2012). Evaluación de la respuesta muscular como herramienta de control en el campo de la actividad física, la salud y el deporte. Revista Andaluza de Medicina del Deporte, 5(1), 28-40. https://doi.org/10.1016/S1888-7546(12)70006-0
Schwiete, C., Roth, C., Braun, C., Rettenmaier, L., Happ, K., Langen, G., & Behringer, M. (2023). Sensor location affects skeletal muscle contractility parameters measured by tensiomyography. Plos one, 18(2), 1-12. https://doi.org/10.1371/journal.pone.0281651
Šimunic, B., Degens, H., Rittweger, J., Narici, M., Mekjavic, I. B., & Pišot, R. (2011). Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Medicine and Science in Sports and Exercise, 43(9), 1619-1625. https://doi.org/10.1249/MSS.0b013e31821522d0
Šimunič, B., Koren, K., Rittweger, J., Lazzer, S., Reggiani, C., Rejc, E., Pišot, R., Narici, M., & Degens, H. (2019). Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. Journal of Applied Physiology, 126(4), 815-822. https://doi.org/10.1152/japplphysiol.00880.2018
Šimunič, B., Pišot, R., Rittweger, J., & Degens, H. (2018). Age-related slowing of contractile properties differs between power, endurance, and nonathletes: a tensiomyographic assessment. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 73(12), 1602-1608. https://doi.org/10.1093/gerona/gly069
Stone, M. H., Stone, M., & Sands, W. A. (2007). Principles and Practice of Resistance Training. Human Kinetics.
Valenzuela, P. L., Maffiuletti, N. A., Saner, H., Schütz, N., Rudin, B., Nef, T., & Urwyler, P. (2020). Isometric strength measures are superior to the timed up and go test for fall prediction in older adults: results from a prospective cohort study. Clinical Interventions in Aging, 15, 2001-2008. https://doi.org/10.2147/CIA.S276828
Vidnjevič, M., Tasheva, R., Urbanc, J., & Gašperin, U. (2017). Differences of the tensiomyography- derived biceps femoris muscle contraction time and displacement between different age and fitness groups. Annales Kinesiologiae, 8(1), 15-22. https://ojs.zrskp.si/index.php/AK/article/view/130
Wilson, M. T., Ryan, A. M., Vallance, S. R., Dias-Dougan, A., Dugdale, J. H., Hunter, A. M., Lee, D., & Macgregor, L. J. (2019). Tensiomyography derived parameters reflect skeletal muscle architectural adaptations following 6-weeks of lower body resistance training. Frontiers in Physiology, 10, 1493. https://doi.org/10.1088/1361-6579/ab1cef
Yoshida, Y., Marcus, R. L., & Lastayo, P. C. (2012). Intramuscular adipose tissue and central activation in older adults. Muscle & Nerve, 46, 813–816. https://doi.org/10.1002/mus.23506
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andrés Parodi-Feye, Álvaro Cappuccio-Díaz, Carlos Magallanes-Mira

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.