Effect of subthalamic deep brain stimulation on gait in patients with advanced Parkinson’s disease
DOI:
https://doi.org/10.47197/retos.v70.110243Keywords:
Deep brain stimulation, Parkinson’s disease, Gait analysis, kinematicsAbstract
Introduction: Advanced Parkinson's disease severely affects gait. According to literature, deep brain stimulation of the subthalamic nucleus has scarce impact on gait in this disease.
Objective: To evaluate and compare gait kinematics and parameters in patients with Advanced Parkinson's disease treated previously with deep brain stimulation of the subthalamic nucleus without anti-Parkinsonian medications, in ON and OFF modes of stimulation.
Methodology: This was a single-group pre-post quasi-experimental study and included 11 patients with idiopathic Advanced Parkinson's disease who were treated with deep brain stimulation of the subthalamic nucleus. Gait kinematic measurements were compared between the ON-OFF conditions within the same patients.
Results: A significantly greater range of joint movement was found in the ON condition vs. OFF condition in the knee (42.64° vs. 38.28°, p=0.04) and the ankle (20.42° vs. 16.58°, p=0.04). In the coronal plane, greater joint movement was found in the trunk (4.0° vs. 3.19°, p=0.05). Gait Deviation Index was significantly higher while in ON condition vs. OFF condition (80.23° vs. 75.15°, p=0.06).
Discussion: Although this study yields data that supports the fact that the deep brain stimulation of the subthalamic nucleus positively affects the gait characteristics studied and presented, there are others that have reported contradictory findings, possibly related to methodological limitations.
Conclusions: Patients presented an improvement in gait kinematics and parameters with the effects of deep brain stimulation of the subthalamic nucleus. Gait Deviation Index was sensitive to changes observed under ON-OFF conditions. Studies with larger number of patients are needed to draw more accurate conclusions.
References
Allert, N., Volkmann, J., Dotse, S., Hefter, H., Sturm, V., & Freund, H.J. (2001). Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Movement disorders, 16(6), 1076–1085. https://doi.org/10.1002/mds.1222
Anidi, C., O'Day, J. J., Anderson, R. W., Afzal, M. F., Syrkin-Nikolau, J., Velisar, A., & Bronte-Stewart, H. M. (2018). Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiology of disease, 120, 107–117. https://doi.org/10.1016/j.nbd.2018.09.004
Bella, S. D., Benoit, C. E., Farrugia, N., Keller, P. E., Obrig, H., Mainka, S., & Kotz, S. A. (2017). Gait im-provement via rhythmic stimulation in Parkinson's disease is linked to rhythmic skills. Scien-tific reports, 7, 42005. https://doi.org/10.1038/srep42005
Collomb-Clerc, A., & Welter, M. L. (2015). Effects of deep brain stimulation on balance and gait in pa-tients with Parkinson's disease: A systematic neurophysiological review. Neurophysiologie cli-nique, 45(4-5), 371–388. https://doi.org/10.1016/j.neucli.2015.07.001
Davis, R. B., Õunpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human Movement Science, 10(5), 575-587. https://doi.org/10.1016/0167-9457(91)90046-Z
Deuschl, G., Antonini, A., Costa, J., Śmiłowska, K., Berg, D., Corvol, J. C., Fabbrini, G., Ferreira, J., Folty-nie, T., Mir, P., Schrag, A., Seppi, K., Taba, P., Ruzicka, E., Selikhova, M., Henschke, N., Villanue-va, G., & Moro, E. (2022). European Academy of Neurology/Movement Disorder Society - Eu-ropean Section guideline on the treatment of Parkinson's disease: I. Invasive thera-pies. European journal of neurology, 29(9), 2580–2595. https://doi.org/10.1111/ene.15386
di Biase, L., Di Santo, A., Caminiti, M. L., De Liso, A., Shah, S. A., Ricci, L., & Di Lazzaro, V. (2020). Gait Analysis in Parkinson's Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors, 20(12), 3529. https://doi.org/10.3390/s20123529
Ferrarin, M., Rizzone, M., Bergamasco, B., Lanotte, M., Recalcati, M., Pedotti, A., & Lopiano, L. (2005). Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson's dis-ease. Experimental brain research, 160(4), 517–527. https://doi.org/10.1007/s00221-004-2036-5
Gaßner, H., Trutt, E., Seifferth, S., Friedrich, J., Zucker, D., Salhani, Z., Adler, W., Winkler, J., & Jost, W. H. (2022). Treadmill training and physiotherapy similarly improve dual task gait performance: a randomized-controlled trial in Parkinson's disease. Journal of Neural Transmission, 129(9), 1189–1200. https://doi.org/10.1007/s00702-022-02514-4
Galli, M., Cimolin, V., De Pandis, M. F., Schwartz, M. H., & Albertini, G. (2012). Use of the Gait Deviation index for the evaluation of patients with Parkinson's disease. Journal of motor behavior, 44(3), 161–167. https://doi.org/10.1080/00222895.2012.664180
Gavriliuc, O., Paschen, S., Andrusca, A., Helmers, A. K., Schlenstedt, C., & Deuschl, G. (2020). Clinical patterns of gait freezing in Parkinson's disease and their response to interventions: An observ-er-blinded study. Parkinsonism & related disorders, 80, 175–180. https://doi.org/10.1016/j.parkreldis.2020.09.043
Gougeon, M. A., Zhou, L., & Nantel, J. (2017). Nordic Walking improves trunk stability and gait spatial-temporal characteristics in people with Parkinson disease. NeuroRehabilitation, 41(1), 205–210. https://doi.org/10.3233/NRE-171472
Hariz, M., & Blomstedt, P. (2022). Deep brain stimulation for Parkinson's disease. Journal of internal medicine, 292(5), 764-778. https://doi.org/10.1111/joim.13541
Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression and mortality. Neurology, 17(5), 427–442. https://doi.org/10.1212/wnl.17.5.427
Johnsen E. L. (2011). Gait and postural instability in Parkinson's disease treated with deep brain stimu-lation of the subthalamic nucleus. Danish medical bulletin, 58(10), B4334.
Lubik, S., Fogel, W., Tronnier, V., Krause, M., König, J., & Jost, W. H. (2006). Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. Journal of neural transmission, 113(2), 163–173. https://doi.org/10.1007/s00702-005-0310-8
Luna, N. M. S., Lucareli, P. R. G., Sales, V. C., Speciali, D., Alonso, A. C., Peterson, M. D., Rodrigues, R. B. M., Fonoffc, E. T., Barbosac, E. R., Teixeira, M. J., & Greve, J. M. D. A. (2018). Treadmill training in Parkinson's patients after deep brain stimulation: Effects on gait kinema-tic. NeuroRehabilitation, 42(2), 149–158. https://doi.org/10.3233/NRE-172267
Mollinedo-Cardalda, I., Machado de Oliveira, I., Vila Suárez, H., & Cancela Carral, J. M. (2023). ¿El tra-tamiento con ejercicios de Pilates de alta intensidad es beneficioso para las personas con en-fermedad de Parkinson? (Is high intensity Pilates exercise treatment beneficial for people with Parkinson´s disease?). Retos, 48, 937–944. https://doi.org/10.47197/retos.v48.96771
Navratilova, D., Krobot, A., Otruba, P., Nevrly, M., Krahulik, D., Kolar, P., Kolarova, B., Kaiserova, M., Mensikova, K., Vastik, M., Kurcova, S., & Kanovsky, P. (2020). Deep Brain Stimulation Effects on Gait Pattern in Advanced Parkinson's Disease Patients. Frontiers in neuroscience, 14, 814. https://doi.org/10.3389/fnins.2020.00814
Pötter-Nerger, M., & Volkmann, J. (2013). Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Movement disorders, 28(11), 1609–1615. https://doi.org/10.1002/mds.25677
Pereira-Pedro, K. P., Machado de Oliveira, I., Cancela Carral, J. M., & Mollinedo Cardalda, I. (2023). Efectos de la terapia de movimiento MOTOmed® sobre la función motora y los principales sín-tomas de pacientes con enfermedad de Parkinson: una revisión sistemática (Effects of MOTO-med® movement therapy on the motor function and main symptoms of patients with Parkin-son’s disease: a systematic review). Retos, 47, 249–257. https://doi.org/10.47197/retos.v47.93936
Peterson, D. S., Mancini, M., Fino, P. C., Horak, F., & Smulders, K. (2020). Speeding Up Gait in Parkin-son's Disease. Journal of Parkinson's disease, 10(1), 245–253. https://doi.org/10.3233/JPD-191682
Pinto de Souza, C., Hamani, C., Oliveira Souza, C., Lopez Contreras, W. O., Dos Santos Ghilardi, M. G., Cury, R. G., Reis Barbosa, E., Jacobsen Teixeira, M., & Talamoni Fonoff, E. (2017). Spinal cord stimulation improves gait in patients with Parkinson's disease previously treated with deep brain stimulation. Movement disorders, 32(2), 278–282. https://doi.org/10.1002/mds.26850
Rizzone, M. G., Ferrarin, M., Lanotte, M. M., Lopiano, L., & Carpinella, I. (2017). The Dominant-Subthalamic Nucleus Phenomenon in Bilateral Deep Brain Stimulation for Parkinson's Disease: Evidence from a Gait Analysis Study. Frontiers in neurology, 8, 575. https://doi.org/10.3389/fneur.2017.00575
Rueda-Acevedo, M., Bastidas Benavides, J. L., & Bareño Silva, J. (2014). Efectividad de la estimulación cerebral profunda de núcleo subtalámico en pacientes con enfermedad de Parkinson: expe-riencia en Antioquia. Acta Neurológica Colombiana, 30(3), 143-148.
Russo, M., Amboni, M., Pisani, N., Volzone, A., Calderone, D., Barone, P., Amato, F., Ricciardi, C., & Ro-mano, M. (2025). Biomechanics Parameters of Gait Analysis to Characterize Parkinson's Dis-ease: A Scoping Review. Sensors, 25(2), 338. https://doi.org/10.3390/s25020338
Saunders, J. B., Inman, V. T., & Eberhart, H. D. (1953). The major determinants in normal and patholog-ical gait. The Journal of bone and joint surgery, 35-A(3), 543–558.
Schwartz, M. H., & Rozumalski, A. (2008). The Gait Deviation Index: a new comprehensive index of gait pathology. Gait & posture, 28(3), 351–357. https://doi.org/10.1016/j.gaitpost.2008.05.001
Seger, A., Gulberti, A., Vettorazzi, E., Braa, H., Buhmann, C., Gerloff, C., Hamel, W., Moll, C. K. E., & Pöt-ter-Nerger, M. (2021). Short Pulse and Conventional Deep Brain Stimulation Equally Improve the Parkinsonian Gait Disorder. Journal of Parkinson's disease, 11(3), 1455–1464. https://doi.org/10.3233/JPD-202492
Snijders, A. H., van de Warrenburg, B. P., Giladi, N., & Bloem, B. R. (2007). Neurological gait disorders in elderly people: clinical approach and classification. The Lancet. Neurology, 6(1), 63–74. https://doi.org/10.1016/S1474-4422(06)70678-0
Speciali, D. S., Corrêa, J. C., Luna, N. M., Brant, R., Greve, J. M., de Godoy, W., Baker, R., & Lucareli, P. R. (2014). Validation of GDI, GPS and GVS for use in Parkinson's disease through evaluation of ef-fects of subthalamic deep brain stimulation and levodopa. Gait & posture, 39(4), 1142–1145. https://doi.org/10.1016/j.gaitpost.2014.01.011
Tramontano, M., Bonnì, S., Martino Cinnera, A., Marchetti, F., Caltagirone, C., Koch, G., & Peppe, A. (2016). Blindfolded Balance Training in Patients with Parkinson's Disease: A Sensory-Motor Strategy to Improve the Gait. Parkinson's disease, 2016, 7536862. https://doi.org/10.1155/2016/7536862
Vítečková, S., Horáková, H., Poláková, K., Krupička, R., Růžička, E., & Brožová, H. (2020). Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for measurement of gait parameters in healthy adults and Parkinson's disease patients. PeerJ, 8, e8835. https://doi.org/10.7717/peerj.8835
Walkowski, A. L. I. W., Moratelli, J. A. M., Meliani, A. A. G. M., Garcia Lima, A. G. L., & Guimarães, A. C. de A. G. (2024). Efectos Del Mat Pilates En La Amplitud De Movimiento, El Equilibrio, La Flexibili-dad Y La Movilidad Funcional En Personas Con Parkinson: (Effects Of Mat Pilates On Range Of Motion, Balance, Flexibility And Functional Mobility In People With Parkinson’s). Retos, 54, 255–263. https://doi.org/10.47197/retos.v54.102220
Zanardi, A. P. J., da Silva, E. S., Costa, R. R., Passos-Monteiro, E., Dos Santos, I. O., Kruel, L. F. M., & Pey-ré-Tartaruga, L. A. (2021). Gait parameters of Parkinson's disease compared with healthy con-trols: a systematic review and meta-analysis. Scientific reports, 11(1), 752. https://doi.org/10.1038/s41598-020-80768-2
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan F. Mier-García, Lina M. Villegas-Trujillo, Juan Camilo Salcedo, Sebastián Ordoñez, María José Uparela, Fernanda Arbeláez, Camilo A. Turriago-Pérez, Lesbby Gómez-Salazar, Óscar A. Escobar-Vidarte

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.