Efecto del entrenamiento HIIT frente al entrenamiento de resistencia sobre los marcadores de estrés oxidativo

Autores/as

DOI:

https://doi.org/10.47197/retos.v71.117408

Palabras clave:

Entrenamiento interválico de alta intensidad (HIIT), entrenamiento continuo de intensidad moderada (MICT), malondialdehído (MDA), catalasa (CAT), superóxido dismutasa (SOD), adaptaciones fisiológicas

Resumen

Introducción. Para evitar ambigüedades conceptuales, en este estudio el entrenamiento de resistencia se denomina MICT, lo que refleja esfuerzos sostenidos de intensidad moderada (zona 2 del modelo trifásico de Seiler). En cambio, el HIIT se clasifica como ejercicio intermitente vigoroso (zona 3). Esta diferenciación es esencial para comparar las adaptaciones fisiológicas de ambas modalidades (Seiler, 2010). El estrés oxidativo, que surge de un desequilibrio entre la producción de especies reactivas de oxígeno (ROS) y la capacidad antioxidante, puede causar daño celular y contribuir a enfermedades crónicas. Se utilizan biomarcadores como el malondialdehído (MDA), la catalasa (CAT) y la superóxido dismutasa (SOD) para evaluar este desequilibrio. El ejercicio físico, particularmente el entrenamiento interválico de alta intensidad (HIIT) y el entrenamiento continuo de intensidad moderada (MICT), modula la homeostasis redox, pero sus efectos comparativos siguen poco explorados.

Objetivo. Comparar los efectos de un protocolo de HIIT frente a un protocolo de entrenamiento continuo de intensidad moderada (MICT) sobre los marcadores de estrés oxidativo (MDA, CAT, SOD) en atletas sanos, para mejorar la comprensión de las adaptaciones fisiológicas inducidas por el ejercicio.

Metodología. Veinte atletas varones sanos (18–35 años) fueron asignados aleatoriamente a dos grupos (MICT, n=10; HIIT, n=10) y siguieron un protocolo de entrenamiento de 4 semanas (3 sesiones/semana, 60–80 % del VO₂máx). Los niveles de MDA, CAT y SOD se midieron mediante colorimetría antes y después del ejercicio al inicio y al final del programa. Se utilizó un ANOVA de medidas repetidas para evaluar los efectos del ejercicio, del programa de entrenamiento y sus interacciones, con un nivel de significación de p<0,05.

Resultados. Ambas modalidades de entrenamiento aumentaron la actividad de CAT (MICT: +5,4 % en reposo, +10,0 % post-ejercicio; HIIT: +6,4 % en reposo, +11,0 % post-ejercicio) sin diferencias intergrupales. Los niveles de SOD aumentaron en el grupo MICT en reposo (+5,3 %) y post-ejercicio (+6,0 %), pero solo post-ejercicio en el grupo HIIT (+8,4 %). Los niveles de MDA disminuyeron en reposo en ambos grupos (MICT: -15,2 %; HIIT: -17,3 %) y post-ejercicio en el grupo HIIT (-13,0 %), pero no en el grupo MICT post-ejercicio.

Referencias

Alizadeh, A. M., Ghorbanzade, M., & Khodayar, M. J. (2023). The effect of high-intensity interval training on oxidative stress markers and antioxidant enzymes in cardiac tissue of rats. Journal of Basic and Clinical Physiology and Pharmacology, 34(1), 1–7. https://doi.org/10.1515/jbcpp-2022-0087

Alvero-Cruz,J.R.,García-Romero,J.C.,Ronconi,M.,&Alacid,F.(2020).High-intensity interval training versus moderate-intensity continuous training on aerobic capacity and endothelial function: A systematic review. Journal of Sports Medicine and Physical Fitness, 60(3), 464–472. https://doi.org/10.23736/S0022-4707.20.10357-4.

Amiri, E., & Sheikholeslami-Vatani, D. (2023). The role of high-intensity interval training (HIIT) and creatine supplementation on oxidative stress, antioxidant defense, muscle strength, and quality of life in older adults. Frontiers in Public Health, 11, 1062832. https://doi.org/10.3389/fpubh.2023.1062832

Awang Daud, N. A., Mohamad, N. A., & Abdul Hamid, M. R. (2022). Acute effect of high-intensity interval training on oxidative stress markers in healthy young adults. Journal of Sports Science and Medicine, 21(2), 256–263.

Bloomer, R. J., & Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: A review. Canadian Journal of Applied Physiology, 29(3), 321–333. https://doi.org/10.1139/h04-020

Bloomer, R. J., Goldfarb, A. H., & McKenzie, M. J. (2005). Oxidative stress response to aerobic exercise: Comparison of antioxidant supplements. Medicine & Science in Sports & Exercise, 38(6), 1098–1105. https://doi.org/10.1249/01.mss.0000222839.51144.3e

Bogdanis, G. C., Nevill, M. E., & Sidossis, L. S. (2013). High-intensity interval training reduces oxidative stress and increases antioxidant capacity in healthy young men. Journal of Sports Sciences, 31(14), 1584–1592. https://doi.org/10.1080/02640414.2013.799485

Conti, V., Sellitto, C., Stefanelli, B., Trucillo, M., Manzo, V., Perna, A., Charlier, B., Mensitieri, F., Izzo, V., & Luca, A. D. (2022). Antioxidant supplementation hinders the role of exercise training as a natural activator of SIRT1. Biology and Life Sciences Forum, 12, 30. https://doi.org/10.3390/IECN2022-12375

De Sousa, C. V., Sales, M. M., Rosa, T. S., Lewis, J. E., de Andrade, R. V., & Simões, H. G. (2017). The antioxidant effect of exercise: A systematic review and meta-analysis. Sports Medicine, 47(2), 273–293. https://doi.org/10.1007/s40279-016-0566-1

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on the effect of dietary polyphenols and antioxidant vitamins on oxidative stress. Journal of Nutritional Biochemistry, 16(1), 1–12. https://doi.org/10.1016/j.jnutbio.2004.10.007

Finaud, J., Lac, G., & Filaire, E. (2006). Oxidative stress: relationship with exercise and training. Sports Medicine, 36(4), 327–338. https://doi.org/10.2165/00007256-200636040-00004

Fisher-Wellman, K. H., & Bloomer, R. J. (2009). Acute exercise and oxidative stress: A 30-year history. Dynamic Medicine, 8(1), 1. https://doi.org/10.1186/1476-5918-8-1

Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., ... & Tarnopolsky, M. A. (2006). Short-term sprint interval training improves muscle oxidative capacity and MICT performance in humans. Journal of Physiology, 571(3), 677–686. https://doi.org/10.1113/jphysiol.2005.100174

Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B., & Vina, J. (2015). Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radical Biology and Medicine, 86, 37–46. https://doi.org/10.1016/j.freeradbiomed.2015.04.006

Gomes, R. S., Gonçalves, E. M., de Oliveira, M. R., & de Pinho, R. A. (2021). Association between MICT performance, oxidative stress, and antioxidant markers during a running training program in untrained men. Sport Sciences for Health, 17(3), 647–655. https://doi.org/10.1007/s11332-021-00800-4

Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press.

Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase, catalase and glutathione peroxidase: Their functions, mechanisms of action and related diseases. African Journal of Biotechnology, 17(13), 367–376. https://doi.org/10.5897/AJB2017.16333

Jones, A. M. (2024).Exercise intensity domains and training prescription in endurance sports: From physiology to practice. European Journal of Sport Science, 24(1), 1–12. https://doi.org/10.1080/17461391.2023.2245672

Karimi, P., Dabidi Roshan, V., & Mahjoub, S. (2014). Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of MICT, HIIT, and concurrent training in untrained males. Journal of Exercise Science & Fitness, 12(1), 1–6. https://doi.org/10.1016/j.jesf.2013.12.001

Kruk, J., Aboul-Enein, B. H., Bernstein, J., & Marchlewicz, M. (2024). The impact of physical exercise on oxidative and nitrosative stress: Balancing the benefits and risks. Antioxidants, 13(5), 573. https://doi.org/10.3390/antiox13050573

Laursen, P. B., & Jenkins, D. G. (2009). The scientific basis for high-intensity interval training: optimising training programmes and maximising physiological adaptations. Sports Medicine, 39(10), 771–792. https://doi.org/10.2165/11317000-200939100-00003

Mallett, R. (2024). The impact of moderate-intensity continuous training (MICT) on oxidative stress markers: A systematic review. Unpublished manuscript.

Margaritelis, N. V., Theodorou, A. A., Paschalis, V., Veskoukis, A. S., & Kyparos, A. (2020). Adaptations to regular exercise: Balancing oxidative stress with redox homeostasis. Redox Biology, 34, 101476. https://doi.org/10.1016/j.redox.2020.101476

McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., … Burke, L. M. (2022).Defining training and performance characteristics in endurance athletes: A framework for research and practice. Sports Medicine, 52(8), 1551–1571. https://doi.org/10.1007/s40279-022-01621-6

Medeiros, N. S., Abreu, F. G., Colato, A. S., et al. (2015). Effects of concurrent training on oxidative stress and insulin HIIT in obese individuals. Oxidative Medicine and Cellular Longevity, 2015, 697181. https://doi.org/10.1155/2015/697181

Nikolaidis, M. G., & Kyparos, A. (2012). Oxidative stress in exercise: an overview. Journal of Sports Science and Medicine, 11(4), 597–605.

Nikolaidis, M. G., Kerksick, C. M., Lamprecht, M., & McAnulty, S. R. (2012). Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxidative Medicine and Cellular Longevity, 2012, 707941. https://doi.org/10.1155/2012/707941

Paulsen, G., Cumming, K. T., Holden, G., Hallén, J., Rønnestad, B. R., Urdal, P., Skaug, A., Flæte, O., & Raastad, T. (2014). Vitamin C and E supplementation hampers cellular adaptation to moderate-intensity continuous training (MICT) in humans: A double-blind, randomised, controlled trial. Journal of Physiology, 592(8), 1887–1901. https://doi.org/10.1113/jphysiol.2013.267419

Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276. https://doi.org/10.1152/physrev.00031.2007

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2013). Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & Redox Signaling, 18(10), 1208–1246. https://doi.org/10.1089/ars.2011.4498

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2020). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(3), 225–233. https://doi.org/10.1016/j.jshs.2020.04.001

Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences, 106(21), 8665–8670. https://doi.org/10.1073/pnas.0903485106.

Rivera-Köfler, L., Schumann, M., & Granacher, U. (2025).Classification of exercise modalities: Towards a unified framework for intensity-based training prescription. Sports Medicine, 55(2), 123–137. https://doi.org/10.1007/s40279-024-01890-5.

Sarkar, K. (2021). High-intensity interval training (HIIT) improves antioxidant status in young adults. Journal of Exercise Science & Fitness, 19(2), 153–158. https://doi.org/10.1016/j.jesf.2021.03.001

Seiler, S. (2010).What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5(3), 276–291. https://doi.org/10.1123/ijspp.5.3.276.

Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Archives of Biochemistry and Biophysics, 572, 100–107. https://doi.org/10.1016/j.abb.2015.02.016

Skovgaard, C., & Bangsbo, J. (2015). Oxidative stress and antioxidant defence in relation to high-intensity exercise. Journal of Physiology, 593(16), 3577–3588. https://doi.org/10.1113/JP270031

Soltany, H. (2025). Effects of 8 weeks of high-intensity interval training on antioxidant enzymes in muscle tissue. Unpublished manuscript.

Thirupathi, A., Pinho, R. A., Ugbolue, U. C., He, Y., Meng, Y., & Gu, Y. (2021a). Effect of running exercise on oxidative stress biomarkers: A systematic review. Frontiers in Physiology, 11, 610112. https://doi.org/10.3389/fphys.2020.610112

Thirupathi, A., Pinho, R. A., Ugbolue, U. C., He, Y., Meng, Y., & Gu, Y. (2021b). Effect of different exercise modalities on oxidative stress: A systematic review. BioMed Research International, 2021, 1947928. https://doi.org/10.1155/2021/1947928

Urso, M. L., & Clarkson, P. M. (2000). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 153(1–3), 41–56. https://doi.org/10.1016/S0300-483X(00)00301-3

Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., & Zheng, G. (2021). The effects of aerobic exercise on oxidative stress in older adults: A systematic review and meta-analysis. Frontiers in Physiology, 12, 701151. https://doi.org/10.3389/fphys.2021.701151

Zouhal, H., Jacob, C., Delamarche, P., & Gratas-Delamarche, A. (2008). Antioxidant enzyme activities and oxidative stress in response to high-intensity intermittent exercise. Journal of Sports Sciences, 26(10), 1017–1025. https://doi.org/10.1080/02640410802007804

Descargas

Publicado

11-09-2025

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Cómo citar

Nizar, L., & Madani, M. (2025). Efecto del entrenamiento HIIT frente al entrenamiento de resistencia sobre los marcadores de estrés oxidativo. Retos, 71, 1033-1044. https://doi.org/10.47197/retos.v71.117408