Diferencias asociadas a la edad en las propiedades mecánicas y funcionales de la musculatura flexo-extensora de rodilla
DOI:
https://doi.org/10.47197/retos.v72.116164Palabras clave:
Calidad Muscular, Adultos Mayores, Envejecimiento, Capacidad flexo-extensora de rodillaResumen
Introducción y Objetivo. La pérdida de calidad muscular (CM) con el envejecimiento está asociada a un aumento de la morbi-mortalidad. Por lo tanto, su caracterización en adultos mayores (AM) resulta esencial. El objetivo de este estudio fue caracterizar y comparar indicadores de CM de músculos flexo-extensores de rodilla en diferentes grupos etarios.
Metodología. Sesenta y seis voluntarios de ambos sexos se dividieron en tres grupos: adultos jóvenes (22,1 ± 1,6 años), adultos (49,9 ± 8,3 años) y adultos mayores (71,0 ± 6,4 años). Se evaluaron el desplazamiento radial máximo (Dm) y el tiempo de contracción (Tc) del recto femoral (RF) y bíceps femoral (BF), junto con las variables dinamométricas de fuerza isométrica y potencia máximas de flexo-extensión de rodilla. Las diferencias entre grupos se evaluaron mediante ANOVA, y se analizaron las correlaciones entre los dos tipos de variable.
Resultados. El envejecimiento se asoció con una disminución (p < 0,05) de la fuerza isométrica y la potencia para la extensión y flexión, con un aumento significativo (p < 0,05) del Tc RF y una tendencia al aumento del Tc BF. La Dm de ambos músculos no mostró diferencias (p > 0,05) entre los grupos. Para la extensión, se observó una correlación negativa débil (p < 0,05) entre ambas modalidades de fuerza y el Tc RF, y una correlación positiva débil entre estas medidas y el Dm RF. Para la flexión, se encontraron correlaciones negativas débiles (p < 0,05) entre ambas modalidades de fuerza y el Tc BF, sin correlaciones con el Dm BF.
Conclusiones.Las variables tensiomiográficas, en particular Dm, no parecen ser sensibles para detectar el deterioro de CM cuando se analizan de forma aislada. Sería necesario incorporar nuevos indicadores para mejorar la precisión de la evaluación.
Referencias
Asaka, T., & Wang, Y. (2008). Effects of aging on feedforward postural synergies. Journal of Human Kinetics, 20(2008), 63-70. https://doi.org/10.2478/v10078-008-0018-6
Axelrod, C. L., Dantas, W. S., & Kirwan, J. P. (2023). Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism, 146, 1-10. https://doi.org/10.1016/j.metabol.2023.155639
Brauer, A. G., Lima da Silva, A. E., Teixeira, J., Villarejo-Mayor, J. J., & Barauce- Bento, P. C. (2023). Muscle Architecture, Muscle Quality, and Neuromuscular Function of the Knee Extensor Muscle: A Comparison between Middle-aged and Older Endurance Runners. Journal of Physical Education & Sport, 23(7), 1794-1803. https://doi.org/0.7752/jpes.2023.07219
Calvo-Lobo, C., Díez-Vega, I., García-Mateos, M., Molina-Martín, J. J., Díaz-Ureña, G., & Rodríguez- Sanz, D. (2018). Relationship of the skin and subcutaneous tissue thickness in the tensiomyography response: a novel ultrasound observational study. Revista da Associação Médica Brasileira, 64(6), 549-553. https://doi.org/10.1590/1806-9282.64.06.549
Chai, J. H., Kim, C. H., & Bae, S. W. (2022). Comparison of thigh muscle characteristics between older and young women using tensiomyography [preprint]. bioRxiv. https://doi.org/10.1101/2022.08.05.502971
Chtourou, H., & Souissi, N. (2012). The effect of training at a specific time of day: a review. The Journal of Strength & Conditioning Research, 26(7), 1984-2005. https://doi.org/10.1519/JSC.0b013e31825770a7
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
D’Antona, G., Pellegrino, M. A., Adami, R., Rossi, R., Carlizzi, C. N., Canepari, M., Saltin, B., & Bottinelli, R. (2003). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. The Journal of Physiology, 552(2), 499–511. https://doi.org/10.1113/jphysiol.2003.046276
de Paula-Simola, R. Á., Harms, N., Raeder, C., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2015). Assessment of neuromuscular function after different strength training protocols using tensiomyography. The Journal of Strength & Conditioning Research, 29(5), 1339-1348. https://doi.org/10.1519/JSC.0000000000000768
Deschenes, R. M., Gaertner, J., & O’Reilly, S. (2013). The effects of sarcopenia on muscles with different recruitment patterns and myofiber profiles. Current Aging Science, 6(3), 266-272. https://doi.org/10.2174/18746098113066660035
Ditroilo, M., Hunter, A. M., Haslam, S., & De Vito, G. (2011). The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiological Measurement, 32(8), 1-30. https://doi.org/10.1088/09673334/32/8/020
Fabiani, E., Herc, M., Šimunič, B., Brix, B., Löffler, K., Weidinger, L., Ziegl, A., Kastner, P., Kapel, A., & Goswami, N. (2021). Correlation between timed up and go test and skeletal muscle tensiomyography in female nursing home residents. Journal of Musculoskeletal & Neuronal Interactions, 21(2), 247-254. https://pubmed.ncbi.nlm.nih.gov/34059569/
Faulkner, J. A., Larkin, L. M., Claflin, D. R., & Brooks, S. V. (2007). Age‐related changes in the structure and function of skeletal muscles. Clinical and Experimental Pharmacology and Physiology, 34(11), 1091-1096. https://doi.org/10.1111/j.1440-1681.2007.04752.x
Fragala, M. S., Kenny, A. M., & Kuchel, G. A. (2015). Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Medicine, 45(5), 641–658. https://doi.org/10.1007/s40279-015-0305-z
Frontera, W. R. (2017). Physiologic changes of the musculoskeletal system with aging: a brief review. Physical Medicine and Rehabilitation Clinics, 28(4), 705-711. https://doi.org/10.1016/j.pmr.2017.06.004
Haus, J. M., Carrithers, J. A., Trappe, S. W., & Trappe, T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. Journal of Applied Physiology, 103(6), 2068-2076. https://doi.org/10.1152/japplphysiol.00670.2007
Höök, P., Sriramoju, V., & Larsson, L. (2001). Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. American Journal of Physiology - Cell Physiology, 280(4), C782-C788. https://doi.org/10.1152/ajpcell.2001.280.4.C782
Labata-Lezaun, N., González-Rueda, V., Llurda-Almuzara, L., López-de-Celis, C., Rodríguez-Sanz, J., Cadellans-Arróniz, A., Bosch, J., & Pérez-Bellmunt, A. (2023). Correlation between physical performance and tensiomyographic and myotonometric parameters in older adults. Healthcare, 11(15), 1-11. https://doi.org/10.3390/healthcare11152169
Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. I., Thompson, W., Kirkland, J. L., & Sandri, M. (2019). Sarcopenia: aging-related loss of muscle mass and function. Physiological Reviews, 99(1), 427-511. https://doi.org/10.1152/physrev.00061.2017
Macgregor, L. J., Hunter, A. M., Orizio, C., Fairweather, M. M., & Ditroilo, M. (2018). Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Medicine, 48(7), 1607–1620. https://doi.org/10.1007/s40279-018-0912-6
Marzuca-Nassr, G. N., Alegría-Molina, A., San Martín-Calísto, Y., Artigas-Arias, M., Huard, N., Sapunar, J., Salazar, L. A. Verdijk, L. B., & van Loon, L. J. (2023). Muscle mass and strength gains following resistance exercise training in older adults 65–75 years and older adults above 85 years. International Journal of Sport Nutrition and Exercise Metabolism, 34(1), 11-19. https://doi.org/10.1123/ijsnem.2023-0087
Mohajer, B., Dolatshahi, M., Moradi, K., Najafzadeh, N., Eng, J., Zikria, B., Guermazi, A., & Demehri, S. (2022). Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data. Radiology, 305(1), 169-178. https://doi.org/10.1148/radiol.212771
Narici, M. V., & Maffulli, N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. British Medical Bulletin, 95(1), 139-159. https://doi.org/10.1152/japplphysiol.00433.2003
Pakosz, P., Konieczny, M., Domaszewski, P., Dybek, T., García-García, O., Gnoiński, M., & Skorupska, E. (2024). Muscle contraction time after caffeine intake is faster after 30 minutes than after 60 minutes. Journal of the International Society of Sports Nutrition, 21(1), 155-165. https://doi.org/10.1080/15502783.2024.2306295
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8(8), 457-465. https://doi.org/10.1038/nrendo.2012.49
Pišot, R., Narici, M. V., Šimunič, B., De Boer, M., Seynnes, O., Jurdana, M., Biolo, G., & Mekjavić, I. B. (2008). Whole muscle contractile parameters and thickness loss during 35-day bed rest. European Journal of Applied Physiology, 104, 409-414. https://doi.org/10.1007/s004210080698-6
Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: shifting perspectives. Sports, 9(9), 1-11. https://doi.org/10.3390/sports9090127
Pus, K., Paravlic, A. H., & Šimunič, B. (2023). The use of tensiomyography in older adults: a systematic review. Frontiers in Physiology, 14, 1213993. https://doi.org/10.3389/fphys.2023.1213993
Reid, K. F., & Fielding, R. A. (2012). Skeletal muscle power: a critical determinant of physical functioning in older adults. Exercise and Sport Sciences Reviews, 40(1), 4-12. https://doi.org/10.1097/JES.0b013e31823b5f13
Rodríguez-Matoso, D., García-Manso, J. M., Sarmiento, S., De Saa, Y., Vaamonde, D., Rodríguez- Ruiz, D., & da Silva-Grigoletto, M. E. (2012). Evaluación de la respuesta muscular como herramienta de control en el campo de la actividad física, la salud y el deporte. Revista Andaluza de Medicina del Deporte, 5(1), 28-40. https://doi.org/10.1016/S1888-7546(12)70006-0
Schwiete, C., Roth, C., Braun, C., Rettenmaier, L., Happ, K., Langen, G., & Behringer, M. (2023). Sensor location affects skeletal muscle contractility parameters measured by tensiomyography. Plos one, 18(2), 1-12. https://doi.org/10.1371/journal.pone.0281651
Šimunic, B., Degens, H., Rittweger, J., Narici, M., Mekjavic, I. B., & Pišot, R. (2011). Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Medicine and Science in Sports and Exercise, 43(9), 1619-1625. https://doi.org/10.1249/MSS.0b013e31821522d0
Šimunič, B., Koren, K., Rittweger, J., Lazzer, S., Reggiani, C., Rejc, E., Pišot, R., Narici, M., & Degens, H. (2019). Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. Journal of Applied Physiology, 126(4), 815-822. https://doi.org/10.1152/japplphysiol.00880.2018
Šimunič, B., Pišot, R., Rittweger, J., & Degens, H. (2018). Age-related slowing of contractile properties differs between power, endurance, and nonathletes: a tensiomyographic assessment. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 73(12), 1602-1608. https://doi.org/10.1093/gerona/gly069
Stone, M. H., Stone, M., & Sands, W. A. (2007). Principles and Practice of Resistance Training. Human Kinetics.
Valenzuela, P. L., Maffiuletti, N. A., Saner, H., Schütz, N., Rudin, B., Nef, T., & Urwyler, P. (2020). Isometric strength measures are superior to the timed up and go test for fall prediction in older adults: results from a prospective cohort study. Clinical Interventions in Aging, 15, 2001-2008. https://doi.org/10.2147/CIA.S276828
Vidnjevič, M., Tasheva, R., Urbanc, J., & Gašperin, U. (2017). Differences of the tensiomyography- derived biceps femoris muscle contraction time and displacement between different age and fitness groups. Annales Kinesiologiae, 8(1), 15-22. https://ojs.zrskp.si/index.php/AK/article/view/130
Wilson, M. T., Ryan, A. M., Vallance, S. R., Dias-Dougan, A., Dugdale, J. H., Hunter, A. M., Lee, D., & Macgregor, L. J. (2019). Tensiomyography derived parameters reflect skeletal muscle architectural adaptations following 6-weeks of lower body resistance training. Frontiers in Physiology, 10, 1493. https://doi.org/10.1088/1361-6579/ab1cef
Yoshida, Y., Marcus, R. L., & Lastayo, P. C. (2012). Intramuscular adipose tissue and central activation in older adults. Muscle & Nerve, 46, 813–816. https://doi.org/10.1002/mus.23506
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Andrés Parodi-Feye, Álvaro Cappuccio-Díaz, Carlos Magallanes-Mira

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess