Efectos de la intensidad del ejercicio en los sistemas cardiorrespiratorio y autónomo, metabolismo y glucemia en mujeres con obesidad abdominal

Autores/as

  • Naparat Doungchan Walailak University
  • Nur Azis Rohmansyah Universitas Negeri Yogyakarta
  • Soraya Aliair Walailak University
  • Arisa Sespheng Walailak University

DOI:

https://doi.org/10.47197/retos.v73.112367

Palabras clave:

Función pulmonar, glucemia, oxidación de sustratos, variación del ritmo cardíaco

Resumen

Introducción: Hacer ejercicio previene y controla la obesidad abdominal. Las personas con hábitos sedentarios acumulan grasa corporal, en comparación con otras físicamente activas. Es interesante analizar las causas de obesidad abdominal entre quienes practican deporte.

Objetivo: Investigar los efectos de la intensidad del ejercicio sobre los sistemas cardiorrespiratorio y nervioso autónomo, el metabolismo y la respuesta de la glucemia en personas con obesidad abdominal.

Metodología: Grupo Activo, ejercicio regular, (n=9) y grupo Sedentario (n=9). Se incluyó personas de cintura > 80 cm o con relación cintura/cadera > 0,85. Ambos grupos se sometieron a una prueba graduada de bicicleta para determinar la oxidación real de grasas y carbohidratos. Se realizó una comparación de la glucemia en ayunas, la función pulmonar y el sistema nervioso autónomo.

Resultados: La glucemia, en ayunas y reposo, mostró una correlación negativa con la oxidación de carbohidratos con ejercicio moderado (r= -0.823, p<0.006) en los Activos, mientras que no hubo correlación con la oxidación de grasas.

Discusión: A intensidad moderada a alta, donde se consumen más carbohidratos que grasas, estos estudios demostraron que la alta intensidad utilizó más carbohidratos. Se hallaron correlaciones negativas entre la oxidación de carbohidratos y la glucemia en los Activos. Estudios previos indican una asociación entre intolerancia a la glucosa y aumento de insulina postprandial.

Conclusiones: A intensidad moderada, la oxidación de carbohidratos mostró una correlación negativa con la glucemia entre los Activos. Sugerimos que la mejor intensidad para la oxidación de grasas es baja, mientras que para la oxidación de carbohidratos es alta con patrón de ejercicios variados.

Biografía del autor/a

  • Naparat Doungchan, Walailak University

    School of Medicne, Walailak University, 222 Thaiburi, Thasala District Nakhonsrithammarat, 80160, Thailand.

  • Nur Azis Rohmansyah, Universitas Negeri Yogyakarta

    Departement of Physical Education Elementary School, Faculty of Sport Sciences and Health, Universitas Negeri Yogyakarta, Jl. Colombo No.1, Karang Malang, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia.

  • Soraya Aliair, Walailak University

    Center for cultural and sports pormotion, Walailak University, 222 Thaiburi, Thasala District Nakhonsrithammarat, 80160, Thailand.

Referencias

Aekplakorn, W., Satheannoppakao, W., Putwatana, P., Taneepanichskul, S., Kessomboon, P., Chong-suvivatwong, V., & Chariyalertsak, S. (2015). Dietary pattern and metabolic syndrome in Thai adults. Journal of Nutrition and Metabolism, 2015, Article 468759. https://doi.org/10.1155/2015/468759

Aekplakorn, W., et al. (2021). The sixth Thai National Health Examination Survey (NHES-VI). The NHES Project, Faculty of Medicine Ramathibodi Hospital, Mahidol University.

Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of Physical Activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

American College of Sports Medicine. (2025). ACSM’s guidelines for exercise testing and prescription (12th ed.). Lippincott Williams & Wilkins. https://shop.lww.com/ACSM-s-Guidelines-for-Exercise-Testing-and-Prescription/p/9781975219215

Bergouignan, A., Latouche, C., Heywood, S., Grace, M. S., Reddy-Luthmoodoo, M., Natoli, A. K., Owen, N., Dunstan, D. W., & Kingwell, B. A. (2016). Frequent interruptions of sedentary time modu-lates contraction- and insulin-stimulated glucose uptake pathways in muscle: Ancillary analysis from randomized clinical trials. Scientific Reports, 6, Article 32044. https://doi.org/10.1038/srep32044

Brun, J.-F., Myzia, J., Varlet-Marie, E., Raynaud de Mauverger, E., & Mercier, J. (2022). Beyond the calo-rie paradigm: Taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients, 14(8), 1605. https://doi.org/10.3390/nu14081605

Borg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012

Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Gar-cia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., Lambert, E., … Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Collins, K. A., Ross, L. M., Slentz, C. A., Willis, L. H., Bateman, L. A., Granville, E. O., Houmard, J. A., & Kraus, W. E. (2022). Differential effects of amount, intensity, and mode of exercise training on insulin sensitivity and glucose homeostasis: A narrative review. Sports Medicine – Open, 8(1), 90. https://doi.org/10.1186/s40798-022-00480-5

Goit, R. K., Paudel, B. H., Khadka, R., Roy, R. K., & Shrewastwa, M. K. (2014). Mild-to-moderate-intensity exercise improves cardiac autonomic drive in type 2 diabetes. Journal of Diabetes In-vestigation, 5(6), 722–727. https://doi.org/10.1111/jdi.12238

González-Acedo, A., Plaza-Florido, A., Amaro-Gahete, F. J., Sacha, J., & Alcantara, J. M. A. (2022). Asso-ciations between heart rate variability and maximal fat oxidation in two different cohorts of healthy sedentary adults. Nutrition, Metabolism and Cardiovascular Diseases, 32(10), 2338–2347. https://doi.org/10.1016/j.numecd.2022.06.015

Goodpaster, B. H., Wolfe, R. R., & Kelley, D. E. (2002). Effects of obesity on substrate utilization during exercise. Obesity Research, 10(7), 575–584. https://doi.org/10.1038/oby.2002.78

Grabner, G. F., Xie, H., Schweiger, M., & Zechner, R. (2021). Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism, 3(11), 1445–1465. https://doi.org/10.1038/s42255-021-00493-6

Horowitz, J. F., & Klein, S. (2000). Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. Journal of Applied Physiology, 89(6), 2276–2282. https://doi.org/10.1152/jappl.2000.89.6.2276

Horton, T. J., & Hill, J. O. (2001). Prolonged fasting significantly changes nutrient oxidation and glucose tolerance after a normal mixed meal. Journal of Applied Physiology, 90(1), 155–163. https://doi.org/10.1152/jappl.2001.90.1.155

Kassi, E., Pervanidou, P., Kaltsas, G., & Chrousos, G. (2011). Metabolic syndrome: Definitions and con-troversies. BMC Medicine, 9, Article 48. https://doi.org/10.1186/1741-7015-9-48

Kelley, D. E., Goodpaster, B. H., & Storlien, L. (2002). Muscle triglyceride and insulin resistance. Annual Review of Nutrition, 22, 325–346. https://doi.org/10.1146/annurev.nutr.22.010402.102912

Koskinen, T., Kähönen, M., Jula, A., Mattsson, N., Laitinen, T., Keltikangas-Järvinen, L., Viikari, J., Välimäki, I., Rönnemaa, T., & Raitakari, O. T. (2009). Metabolic syndrome and short-term heart rate variability in young adults: The cardiovascular risk in young Finns study. Diabetic Medi-cine, 26(4), 354–361. https://doi.org/10.1111/j.1464-5491.2009.02686.x

Leeners, B., Geary, N., Tobler, P. N., & Asarian, L. (2017). Ovarian hormones and obesity. Human re-production update, 23(3), 300–321. https://doi.org/10.1093/humupd/dmw045

Liu, M. Y., & Chen, S. Q. (2022). Effects of low/medium-intensity exercise on fat metabolism after a 6-h fast. International Journal of Environmental Research and Public Health, 19(23), 15502. https://doi.org/10.3390/ijerph192315502

Lovejoy, J. C., Champagne, C. M., de Jonge, L., Xie, H., & Smith, S. R. (2008). Increased visceral fat and decreased energy expenditure during the menopausal transition. International Journal of Obe-sity, 32(6), 949–958. https://doi.org/10.1038/ijo.2008.25

Mafort, T. T., Rufino, R., Costa, C. H., & Lopes, A. J. (2016). Obesity: Systemic and pulmonary complica-tions, biochemical abnormalities, and impairment of lung function. Multidisciplinary Respirato-ry Medicine, 11, Article 28. https://doi.org/10.1186/s40248-016-0066-z

Makni, E., Moalla, W., Trabelsi, Y., Lac, G., Brun, J. F., Tabka, Z., & Elloumi, M. (2012). Six-minute walk-ing test predicts maximal fat oxidation in obese children. International Journal of Obesity, 36(7), 908–913. https://doi.org/10.1038/ijo.2011.257

McClean, C. M., McNeilly, A. M., Trinick, T. R., Murphy, M. H., Duly, E., McLaughlin, J., McEneny, J., Burke, G., & Davison, G. W. (2009). Acute exercise and impaired glucose tolerance in obese humans. Journal of Clinical Lipidology, 3(4), 262–268. https://doi.org/10.1016/j.jacl.2009.07.001

Merz, K. E., & Thurmond, D. C. (2020). Role of skeletal muscle in insulin resistance and glucose uptake. Comprehensive Physiology, 10(3), 785–809. https://doi.org/10.1002/cphy.c190029

Muthukrishnan, S., Vashishta, S., & Bhat, S. (2025). The impact of overweight–obesity on heart rate variability among Indian adults: A cross-sectional study. Journal of Family Medicine and Prima-ry Care, 14(5), 1952–1957. https://doi.org/10.4103/jfmpc.jfmpc_1816_24

Oppert, J. M., Bellicha, A., van Baak, M. A., Battista, F., Beaulieu, K., Blundell, J. E., Carraça, E. V., Encan-tado, J., Ermolao, A., Pramono, A., Farpour-Lambert, N., Woodward, E., Dicker, D., & Busetto, L. (2021). Exercise training in the management of overweight and obesity in adults: Synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obesity Reviews, 22(S4), e13273. https://doi.org/10.1111/obr.13273

Parish, R., & Petersen, K. F. (2005). Mitochondrial dysfunction and type 2 diabetes. Current Diabetes Reports, 5(3), 177–183. https://doi.org/10.1007/s11892-005-0006-3

Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: An update. Canadian Journal of Sport Sciences, 16(1), 23–29.

Powers, S. K., & Howley, E. T. (2007). Exercise physiology: Theory and application to fitness and per-formance (6th ed.). McGraw-Hill.

Purdom, T., Kravitz, L., Dokladny, K., & Mermier, C. (2018). Understanding the factors that affect max-imal fat oxidation. Journal of the International Society of Sports Nutrition, 15, Article 3. https://doi.org/10.1186/s12970-018-0207-1

Salome, C. M., King, G. G., & Berend, N. (2010). Physiology of obesity and effects on lung function. Jour-nal of Applied Physiology, 108(1), 206–211. https://doi.org/10.1152/japplphysiol.00694.2009

Sespheng, A., Songsaengrit, B., Aneknan, P., Tong-Un, T., Tunkamnerdthai, O., & Leelayuwat, N. (2019). Effects of modified arm swing exercise on pulmonary and autonomic nervous functions in pa-tients with metabolic syndrome. Journal of Exercise Physiology Online, 26(6), 26–40. https://www.asep.org/asep/asep/JEPonlineDECEMBER2019_Leelayuwat.pdf

Shadmehri, S., Kazemi, N., & Heydari, F. Z. (2021). Comparison of effect of high-intensity interval train-ing and aerobic training on respiratory volumes in female students. Tanaffos, 20(4), 337–344.

Silva, F. M., Duarte-Mendes, P., Teixeira, A. M., Soares, C. M., & Ferreira, J. P. (2024). The effects of combined exercise training on glucose metabolism and inflammatory markers in sedentary adults: A systematic review and meta-analysis. Scientific Reports, 14(1), 1936. https://doi.org/10.1038/s41598-024-51832-y

Speer, K. E., Naumovski, N., Semple, S., & McKune, A. J. (2019). Lifestyle modification for enhancing autonomic cardiac regulation in children: The role of exercise. Children, 6(11), 127. https://doi.org/10.3390/children6110127

Soltani, M., Baluchi, M. J., Boullosa, D., Daraei, A., Doyle-Baker, P. K., Saeidi, A., Knechtle, B., Dehbaghi, K. M., Mollabashi, S. S., VanDusseldorp, T. A., & Zouhal, H. (2021). Effect of intensity on changes in cardiac autonomic control of heart rate and arterial stiffness after equated continuous run-ning training programs. Frontiers in Physiology, 12, 758299. https://doi.org/10.3389/fphys.2021.758299

Su, Z. Y., Yu, W. L., Yan, Z. W., Ding, D. D., Fang, C. C., Luo, Q. L., Liu, X., & Cao, L. Z. (2024). Comparison of high-intensity interval training and moderate-intensity continuous training on cardiopulmo-nary function, cardiac autonomic function and vascular function in adolescent boys with obesi-ty: A randomized controlled trial. European Journal of Sport Science, 24(12), 1871–1882. https://doi.org/10.1002/ejsc.12207

Sun, Y., Milne, S., Jaw, J. E., Yang, C. X., Xu, F., Li, X., Obeidat, M., & Sin, D. D. (2019). BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: A meta-analysis of clinical trials. Respiratory Research, 20(1), 236. https://doi.org/10.1186/s12931-019-1209-5

World Health Organization. (2018). Global action plan on physical activity 2018–2030: More active people for a healthier world. World Health Organization. https://www.who.int/publications/i/item/9789241514187

Zhang, Y., Chen, H., Chen, L., Gao, L., Li, S., Liu, X., Song, W., Wang, Y., Wu, Q., Yan, H., & Zhou, Z. (2024). Association between moderate-to-vigorous physical activity and chronic disease risk in adults and elderly: Insights from the UK Biobank study. Frontiers in Physiology, 15, 1465168. https://doi.org/10.3389/fphys.2024.1465168

Descargas

Publicado

21-09-2025

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Cómo citar

Doungchan, N., Rohmansyah, N. A., Aliair, S., & Sespheng, A. (2025). Efectos de la intensidad del ejercicio en los sistemas cardiorrespiratorio y autónomo, metabolismo y glucemia en mujeres con obesidad abdominal. Retos, 73, 56-65. https://doi.org/10.47197/retos.v73.112367