El entrenamiento de intensidad moderada tiene un mejor efecto sobre los factores de crecimiento que el entrenamiento de alta intensidad en ratas
DOI:
https://doi.org/10.47197/retos.v69.116181Palabras clave:
Cortisol, hormona del crecimiento, melatonina, entrenamiento de intensidad moderada, entrenamiento de alta intensidadResumen
Introducción: Es bien sabido que el ejercicio es un potente estímulo para el sistema endocrino. Varios estudios previos han examinado los efectos del ejercicio sobre la GH, la melatonina o el cortisol por separado. Sin embargo, hasta la fecha, ningún estudio ha examinado directamente las tres hormonas simultáneamente en un solo protocolo de ejercicio, especialmente utilizando modelos controlados de ratas.
Objetivo: El estudio tiene como objetivo determinar el efecto del entrenamiento de intensidad moderada y del entrenamiento de alta intensidad sobre los determinantes del crecimiento en ratas.
Metodología: Un total de 39 ratas macho, Rattus Norvegicus cepa tipo Wistar, 8 semanas de edad, 160 ± 20 gramos y divididos aleatoriamente en tres grupos: CON (n = 13, controles sin tratamiento), MIT (n = 13, entrenamiento de intensidad moderada, utilizando una cinta de correr con una velocidad de 14-16 m/min durante 30 minutos y HIT (n = 13, entrenamiento de alta intensidad, utilizando una cinta de correr a una velocidad de 22-25 m/min durante 20 minutos). El tratamiento se llevó a cabo de 17:00 a 21:00 p.m. con una frecuencia de 3 veces por semana durante 12 semanas. Se extrajo sangre 24 horas después del último tratamiento de ejercicio. Mediciones séricas de hormona de crecimiento (GH), melatonina y cortisol utilizando ELISA. Los datos se analizaron mediante ANOVA de una vía y la prueba post hoc de HSD de Tukey con niveles de significancia del 5%.
Resultados: Observamos niveles de GH en CON (4,30 ± 0,29) pg/mL, MIT (4,55 ± 0,17) pg/mL, HIT (4,09 ± 0,28) pg/mL y (p < 0,001). Melatonina en CON (172,31 ± 15,86) pg/mL, MIT (193,54 ± 25,01) pg/mL, HIT (165,96 ± 15,44) pg/mL y (p < 0,05). Cortisol en CON (247,22 ± 50,26) ng/mL, MIT (212,82 ± 41,24) ng/mL, HIT (262,11 ± 19,56) ng/mL y (p < 0,05).
Conclusiones: Estos hallazgos sugieren que el entrenamiento de intensidad moderada tiene un mejor efecto sobre los determinantes del crecimiento en comparación con el entrenamiento de alta intensidad en ratas.
Citas
Caplin, A., Chen, F. S., Beauchamp, M. R., & Puterman, E. (2021). The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology, 131, 105336. https://doi.org/10.1016/j.psyneuen.2021.105336.
Celorrio San Miguel, A. M., Roche, E., Herranz-López, M., Celorrio San Miguel, M., Mielgo-Ayuso, J., & Fernández-Lázaro, D. (2024). Impact of melatonin supplementation on sports performance and circulating biomarkers in highly trained athletes: A systematic review of randomized CONrolled trials. Nutrients, 16(7), 1011. https://doi.org/10.3390/nu16071011.
D’Haese, S., Claes, L., De Laat, I., Van Campenhout, S., Deluyker, D., Heeren, E., Haesen, S., Lambrichts, I., Wouters, K., Schalkwijk, C., Hansen, D., Eijnde, B., & Bito, V. (2024). Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients, 16. https://doi.org/10.3390/nu16030431.
De Carvalho, C., Valentim, R., Navegantes, L., & Papoti, M. (2022). Comparison between low, moderate, and high intensity aerobic training with equalized loads on biomarkers and performance in rats. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-22958-8.
De Mendonça, M., Rocha, K., De Sousa, É., Pereira, B., Oyama, L., & Rodrigues, A. (2020). Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice.. American journal of physiology. Endocrinology and metabolism. https://doi.org/10.1152/ajpendo.00172.2020.
Dharmasanti, H. N., Rejeki, P. S., Sulistiawati, S., Halim, S., Antoni, M. F., Subagio, I., … Pranoto, A. (2024). Los efectos beneficiosos de seis semanas de ejercicio de natación sobre la hormona del creci-miento y los niveles de cortisol en ratones macho (Mus musculus) (The beneficial effects of six weeks of swimming exercise on growth hormone and cortisol levels in male mice (Mus musculus)). Retos, 59, 1126–1131. https://doi.org/10.47197/retos.v59.109107
Dhia, I., Maaloul, R., Marzougui, H., Ghroubi, S., Kallel, C., Driss, T., Elleuch, M., Ayadi, F., Turki, M., & Hammouda, O. (2022). Melatonin reduces muscle damage, inflammation and oxidative stress induced by exhaustive exercise in people with overweight/obesity.. Physiology international. https://doi.org/10.1556/2060.2022.00126.
Donato, J., Jr, Wasinski, F., Furigo, I. C., Metzger, M., & Frazão, R. (2021). Central Regulation of Metabolism by Growth Hormone. Cells, 10(1), 129. https://doi.org/10.3390/cells10010129.
Evans, C., LePard, K., Kwak, J., Stancukas, M., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., Antonopoulos, D., Smith, D., Chang, E., & Ciancio, M. (2014). Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0092193.
Faria, V. S., Manchado-Gobatto, F. B., Scariot, P. P. M., Zagatto, A. M., & Beck, W. R. (2022). Melatonin Potentiates Exercise-Induced Increases in Skeletal Muscle PGC-1α and Optimizes Glycogen Replenishment. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.803126.
Fujita, S., Abe, T., Drummond, M. J., et al. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 103(3), 903–910. https://doi.org/10.1152/japplphysiol.00195.2007.
Hacker, S., Keck, J., Reichel, T., Eder, K., Ringseis, R., Karsten Krüger, & Krüger, B. (2023). Biomarkers in Endurance Exercise: Individualized Regulation and Predictive Value. Translational Sports Medicine, 2023, 1–12. https://doi.org/10.1155/2023/6614990.
Kim, D. H., Kim, S. H., Kim, W. H., & Moon, C. R. (2013). The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. Journal of exercise nutrition & biochemistry, 17(4), 199–207. https://doi.org/10.5717/jenb.2013.17.4.199.
Kim, H., & Kim, D. (2014). Effect of Different Exercise Intensity on Blood Melatonin Density in Sleep Disordered Rats. , 9, 45-53. https://doi.org/10.13066/KSPM.2014.9.1.45.
Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339–361. https://doi.org/10.2165/00007256-200535040-00004.
Kruk, J., Aboul-Enein, B. H., & Duchnik, E. (2021). Exercise-induced oxidative stress and melatonin supplementation: current evidence. The journal of physiological sciences: JPS, 71(1), 27. https://doi.org/10.1186/s12576-021-00812-2.
Mashfufa, E., Marina, N., Sari, R., Marta, O., Setyowati, L., Aini, N., & Alifatin, A. (2022). Interaction Between Exercise and Sleep Quality Through Melatonin Synthesis: A Literature Review. KnE Medicine. https://doi.org/10.18502/kme.v2i3.11874.
Pranoto, A., Wahyudi, E., Prasetya, R.E., Fauziyah, S., Kinanti, R.G., Sugiharto, S., & Rejeki, P.S. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Comparative Exercise Physiology, 16(4), 325-332. https://doi.org/10.3920/CEP190063.
Puspita, D. I., Rejeki, P. S., Sari, G. M., Munir, M., Izzatunnisa, N., Muhammad, Halim, S., & Pranoto, A. (2024). The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus). Revista De Investigación E Innovación En Ciencias De La Salud, 7(1), 1-16. https://doi.org/10.46634/riics.314.
Raastad, T., Bjøro, T., & Hallén, J. (2000). Hormonal responses to high- and moderate-intensity strength exercise. European Journal of Applied Physiology, 82, 121-128. https://doi.org/10.1007/s004210050661.
Schroeder, A., Truong, D., Loh, D., Jordan, M., Roos, K., & Colwell, C. (2012). Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice. The Journal of Physiology, 590. https://doi.org/10.1113/jphysiol.2012.233676.
Soler-López, A., Moreno-Villanueva, A., Gómez-Carmona, C. D., & Pino-Ortega, J. (2024). The role of biomarkers in monitoring chronic fatigue among male professional team athletes: A systematic review. Sensors, 24(21), 6862. https://doi.org/10.3390/s24216862.
Taha, M. M., & Mounir, K. M. (2019). Acute response of serum cortisol to different intensities of resisted exercise in the elderly. Bulletin of Faculty of Physical Therapy, 24, 20–25. https://doi.org/10.4103/bfpt.bfpt_13_18.
Veldhuis, J.D., Weltman, A. (2001). Exercise and Growth Hormone Secretion. In: Giustina, A., Manelli, F. (eds) Growth Hormone And The Heart. Endocrine Updates, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1579-1_13.
Yoshida, T., & Delafontaine, P. (2020). Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9. https://doi.org/10.3390/cells9091970.
Zhang, L., Liu, X., Hu, J., Quan, H., Lee, S. K., Mallikarjuna Korivi, Wang, L., Li, T., & Li, W. (2024). Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway. Nutrition & Metabolism, 21(1). https://doi.org/10.1186/s12986-024-00888-8.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Laily Mita Andriana, Adi Pranoto, Greta Ahmad Bukhori, Joseph Kenoly Nugroho, Irmantara Subagio, Nining Widyah Kusnanik, Bayu Agung Pramono, Dany Pramuno Putra, Muhamad Fauzi Antoni, Bekir Erhan Orhan

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess