El efecto de la actividad física en proyectos STEAM diferenciados en el aprendizaje de ciencias y el desarrollo de habilidades del siglo XXI
DOI:
https://doi.org/10.47197/retos.v70.116789Palabras clave:
Actividad física, Proyecto STEAM diferenciado, Aprendizaje de ciencias, Habilidades del siglo XXIResumen
Objetivo: Este estudio compara proyectos STEAM diferenciados en el aprendizaje de ciencias mediante experimentos científicos, la integración de STEAM y la integración de la actividad física, así como las percepciones de los estudiantes sobre el papel de la actividad física. Este estudio también examina cómo estas actividades físicas motivan a los niños y desarrollan habilidades del siglo XXI como el trabajo en equipo, la creatividad y el pensamiento crítico.
Método: Este estudio utiliza enfoques mixtos. La actividad física, la motivación y las habilidades del siglo XXI de los estudiantes se evaluaron mediante un cuestionario de escala Likert. Otros métodos incluyen rúbricas de evaluación de proyectos y notas de observación para evaluar objetivamente las habilidades del siglo XXI, y el análisis de documentos de planificación de proyectos para la comparación de modelos STEAM. Los datos cualitativos se evaluaron temáticamente, mientras que los cuantitativos se analizaron descriptivamente (promedio, desviación estándar, frecuencia). La triangulación combinó datos de múltiples fuentes.
Resultados: Los proyectos STEAM físicamente activos proporcionan una experiencia de aprendizaje más completa e inmersiva que otros métodos. A los estudiantes les gustaron las actividades físicas del proyecto. Las puntuaciones más altas de actividad física se corresponden con una mejor comprensión de las ciencias (β = 0,68, R² ≈ 0,52). La actividad física potencia el trabajo en equipo, el pensamiento crítico y la creatividad (β = 0,50, R² ≈ 0,25, 0,65, 0,42, 0,56, 0,33).
Conclusión: El proyecto STEAM variado con actividades físicas mejora la percepción del alumnado y el conocimiento científico y de habilidades del siglo XXI. La actividad física potencia el aprendizaje y ayuda a dominar el contenido y las habilidades.
Citas
Afzal, A., Kamran, F., & Naseem, A. (2023). The role of teachers in fostering critical thinking skills at the university level. Qlantic Journal of Social Sciences and Humanities, 4(3), 202-214. https://doi.org/10.55737/qjssh.409505257
Al-Kamzari, F., & Alias, N. (2025). A systematic literature review of project-based learning in second-ary school physics: theoretical foundations, design principles, and implementation strategies. Humanities and Social Sciences Communications, 12(1), 1-18. https://doi.org/10.1057/s41599-025-04579-4
Alkhatib, O. J. (2025). STEAM Integration and Engineering: Lessons from Transformative Approaches. In Transformative Approaches to STEAM Integration in Modern Education (pp. 345-374). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-8822-5.ch015
Alley, S., Plotnikoff, R. C., Duncan, M. J., Short, C. E., Mummery, K., To, Q. G., ... & Vandelanotte, C. (2023). Does matching a personally tailored physical activity intervention to participants’ learning style improve intervention effectiveness and engagement?. Journal of Health Psychol-ogy, 28(10), 889-899. https://doi.org/10.1177/13591053221137184
Al-Thani, N. J., & Ahmad, Z. (2025). Learning through “Research Cognitive Theory”: A new framework for developing 21st century research skills in secondary school students. Heliyon, 11(2). https://doi.org/10.1016/j.heliyon.2025.e41950
Al-Thani, N. J., & Ahmad, Z. (2025). Driving Project-Based Learning and Problem-Based Learning Through Research in Middle Schools. In Teaching and Learning with Research Cognitive Theo-ry (pp. 45-58). Springer, Cham. https://doi.org/10.1007/978-3-031-87544-1_3
Alves‐Oliveira, P., Arriaga, P., Xavier, C., Hoffman, G., & Paiva, A. (2022). Creativity landscapes: Sys-tematic review spanning 70 years of creativity interventions for children. The Journal of Crea-tive Behavior, 56(1), 16-40. https://doi.org/10.1002/jocb.514
Al-Wardat, M., Salimei, C., Alrabbaie, H., Etoom, M., Khashroom, M., Clarke, C., ... & Best, T. (2024). Ex-ploring the links between physical activity, emotional regulation, and Mental Well-being in Jor-danian University students. Journal of Clinical Medicine, 13(6), 1533. https://doi.org/10.3390/jcm13061533
Ardenlid, F., Lundqvist, J., & Sund, L. (2025). A scoping review and thematic analysis of differentiated instruction practices: How teachers foster inclusive classrooms for all students, including gifted students. International Journal of Educational Research Open, 8, 100439. https://doi.org/10.1016/j.ijedro.2025.100439
Arroyo-Rojas, F., & Hodge, S. R. (2024). Perspectives on inclusion in physical education from faculty and students at three physical education teacher education programs in Chile. Journal of Teach-ing in Physical Education, 43(4), 636-644. DOI: https://doi.org/10.1123/jtpe.2023-0126
Aubert, S., Barnes, J. D., Demchenko, I., Hawthorne, M., Abdeta, C., Abi Nader, P., ... & Tremblay, M. S. (2022). Global matrix 4.0 physical activity report card grades for children and adolescents: re-sults and analyses from 57 countries. Journal of Physical Activity and Health, 19(11), 700-728. https://doi.org/10.1123/jpah.2022-0456
Bhuttah, T. M., Xusheng, Q., Abid, M. N., & Sharma, S. (2024). Enhancing student critical thinking and learning outcomes through innovative pedagogical approaches in higher education: the medi-ating role of inclusive leadership. Scientific Reports, 14(1), 24362. https://doi.org/10.1038/s41598-024-75379-0
Behnamnia, N., Kamsin, A., Ismail, M. A. B., & Hayati, S. A. (2025). Relationship between creative think-ing and outcomes in a digital STEM-based learning environment: A mixed methods case study. Thinking Skills and Creativity, 57, 101816. https://doi.org/10.1016/j.tsc.2025.101816
Carter, C., Barnett, H., Burns, K., Cohen, N., Gazulla, E. D., Nack, F., ... & Ussher, S. (2021). Defining STEAM approaches for higher education. European Journal of STEM Education, 6(1), 1-16. https://doi.org/10.20897/ejsteme/11354
Cardiff, G., Ní Chróinín, D., Bowles, R., Fletcher, T., & Beni, S. (2023). ‘Just let them have a say!’Students’ perspective of student voice pedagogies in primary physical education. Irish Educational Stud-ies, 42(4), 659-676. https://doi.org/10.1080/03323315.2023.2255987
Chattaraj, D., & Vijayaraghavan, A. P. (2021). The mobility paradigm in higher education: a phenome-nological study on the shift in learning space. Smart Learning Environments, 8(1), 15. https://doi.org/10.1186/s40561-021-00162-x
Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (science, tech-nology, engineering, arts, and mathematics). Oxford research encyclopedia of education. https://doi.org/10.1093/acrefore/9780190264093.013.398
Cooper, G., Tang, KS. (2024). Pixels and Pedagogy: Examining Science Education Imagery by Genera-tive Artificial Intelligence. J Sci Educ Technol 33, 556–568. https://doi.org/10.1007/s10956-024-10104-0
Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage publi-cations.
Dong, S., Zhi, R., & Gan, F. (2025). Integrating Robotics in Art Education: Leveraging Constructivist and Experiential Learning Frameworks to Enhance Cognitive Development, Problem‐Solving Skills and Collaboration Among Diverse Learners. European Journal of Education, 60(2), e70114. https://doi.org/10.1111/ejed.70114
Edelsbrunner, P. A., Schumacher, R., Hänger-Surer, B., Schalk, L., & Stern, E. (2024). Preparation for future conceptual learning: Content-specific long-term effects of early physics instruction. Journal of Educational Psychology, 116(8), 1479–1499. https://doi.org/10.1037/edu0000887
Ernawati, M. D. W., Rusdi, M., Asrial, A., Muhaimin, M., Wulandari, M., & Maryani, S. (2022). Analysis of Problem Based Learning in the Scaffolding Design: Students' Creative-Thinking Skills. Cypriot Journal of Educational Sciences, 17(7), 2333-2348. https://doi.org/10.18844/cjes.v17i7.7551
Estaiteyeh, M., & DeCoito, I. (2023). Planning for differentiated instruction: Empowering teacher can-didates in STEM education. Canadian Journal of Science, Mathematics and Technology Educa-tion, 23(1), 5-26. https://doi.org/10.1007/s42330-023-00270-5
Evans, Retta R., and Sandra K. Sims. (2025). Health and physical education for elementary classroom teachers: An integrated approach. Human Kinetics.
Fizi, R. M., Winarni, S., & Hartanto, A. (2023). A game model in physical education to improve motor skills, cooperation, and discipline of primary school learners. Pedagogy of Physical Culture and Sports, 27(6), 448-455. https://doi.org/10.15561/26649837.2023.0602
Gheyssens, E., Coubergs, C., Griful-Freixenet, J., Engels, N., & Struyven, K. (2022). Differentiated in-struction: the diversity of teachers’ philosophy and praxis to adapt teaching to students’ inter-ests, readiness and learning profiles. International Journal of Inclusive Education, 26(14), 1383-1400. https://doi.org/10.1080/13603116.2020.1812739
Gillespie, A., Glăveanu, V., & de Saint Laurent, C. (2024). Pragmatism and methodology: Doing research that matters with mixed methods. Cambridge University Press.
Goyibova, N., Muslimov, N., Sabirova, G., Kadirova, N., & Samatova, B. (2025). Differentiation approach in education: Tailoring instruction for diverse learner needs. MethodsX, 103163. https://doi.org/10.1016/j.mex.2025.103163
Syaipul Hayat, M., Sumarno, S., Qotrun Nada, N., & Yunus, M. (2025). Integración de la actividad física y los STEAM-SDG basados en Edupas para concienciar a los estudiantes sobre la sostenibilidad en la formación profesional. Retos, 64, 520–531. https://doi.org/10.47197/retos.v64.109836
Hellison, D., Wright, P. M., Martinek, T. J., & Walsh, D. S. (2025). Teaching personal and social responsi-bility through physical activity. Human Kinetics.
Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM
and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education, 9(1), 58. https://doi.org/10.1186/s40594-022-00375-7
Javali, P., Raj, R. G., Shaw, S., Devi, C. H., Kumar, A., Andy, A., ... & Tharayil, A. S. (2025). Virtual Labs and Simulation Tools: Enhancing STEM Education. In Revolutionizing Education With Remote Experimentation and Learning Analytics (pp. 607-632). IGI Global Scientific Publishing. http://dx.doi.org/10.4018/979-8-3693-8593-7.ch035
Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for STEAM educa-tion—A case study. Education Sciences, 10(8), 198. https://doi.org/10.3390/educsci10080198
Kohl III, H. W., Murray, T. D., & Salvo, D. (2025). Foundations of physical activity and public health. Human Kinetics.
Kessler, T. C., Boice, K. L., Koval, J., Jackson, J. R., Choi, J., Alemdar, M., ... & Usselman, M. (2024). Part-nerships in STEAM: How collaborating with STEAM experts impacts K-12 teachers’ abilities to implement STEAM lessons in the classroom. Education Sciences, 14(6), 666. https://doi.org/10.3390/educsci14060666
Latino, F., & Tafuri, F. (2024). Physical activity and cognitive functioning. Medicina, 60(2), 216. https://doi.org/10.3390/medicina60020216
Leavy, A., Dick, L., Meletiou‐Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The preva-lence and use of emerging technologies in STEAM education: A systematic review of the litera-ture. Journal of Computer Assisted Learning, 39(4), 1061-1082. https://doi.org/10.1111/jcal.12806
Lieberman, L. J., Houston-Wilson, C., & Grenier, M. (2024). Strategies for inclusion: Physical education for everyone. Human Kinetics USA.
Lin, C. L., & Tsai, C. Y. (2021). The effect of a pedagogical STEAM model on students’ project compe-tence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x
Mao, F., Huang, F., Zhao, S., & Fang, Q. (2024). Effects of cognitively engaging physical activity inter-ventions on executive function in children and adolescents: A systematic review and meta-analysis. Frontiers in Psychology, 15, 1454447. https://doi.org/10.3389/fpsyg.2024.1454447
McMahon, A. K., & McMahon, D. D. (2020). Flipping Physical Education Classrooms for Grades K–12. Flipped Classrooms with Diverse Learners: International Perspectives, 105-120. https://doi.org/10.1007/978-981-15-4171-1_6
Makuvire, C., Chikuvadze, P., Dziva, D., Mudavanhu, Y., & Mhishi, M. (2025). Transforming Science Ed-ucation Through Arts: Opportunities and Challenges of STEAM Education. Transformative Ap-proaches to STEAM Integration in Modern Education, 583-606. https://doi.org/10.4018/979-8-3693-7408-5.ch024
Mang, H. M. A., Chu, H. E., Martin, S. N., & Kim, C. J. (2023). Developing an evaluation rubric for plan-ning and assessing SSI-based steam programs in science classrooms. Research in Science Edu-cation, 53(6), 1119-1144. https://doi.org/10.1007/s11165-023-10123-8
Marouli, C. (2021). Sustainability education for the future? Challenges and implications for education and pedagogy in the 21st century. Sustainability, 13(5), 2901. https://doi.org/10.3390/su13052901
Martinez, C. (2022). Developing 21st century teaching skills: A case study of teaching and learning through project-based curriculum. Cogent Education, 9(1), 2024936. https://doi.org/10.1080/2331186X.2021.2024936
Mercan, Z., & Kandır, A. (2024). The effect of the Early STEAM Education Program on the visual-spatial reasoning skills of children: research from Turkey. Education, 52(2), 123-153. https://doi.org/10.1080/03004279.2022.2075906
Meydan, C. H., & Akkaş, H. (2024). The role of triangulation in qualitative research: Converging per-spectives. In Principles of Conducting Qualitative Research in Multicultural Settings (pp. 98-129). IGI Global. https://doi.org/10.4018/979-8-3693-3306-8.ch006
Moon, J., & Park, Y. (2022). Exploring south Korean elementary school classroom teachers’ beliefs and practices in physical education. International Journal of Environmental Research and Public Health, 19(22), 15033. https://doi.org/10.3390/ijerph192215033
Newman, T. (2020). Collaboration is uncomfortable. International Journal of Art & Design Educa-tion, 39(4), 788-794. https://doi.org/10.1111/jade.12323
Niklasson, A., Maher, J., Patil, R., Sillén, H., Chen, J., Gwaltney, C., & Rydén, A. (2022). Living with heart failure: patient experiences and implications for physical activity and daily living. ESC heart failure, 9(2), 1206-1215. https://doi.org/10.1002/ehf2.13795
Novak, M., & Schwan, S. (2021). Does touching real objects affect learning?. Educational Psychology Review, 33(2), 637-665. https://doi.org/10.1007/s10648-020-09551-z
Nygren, M. O., Price, S., & Thomas Jha, R. (2024). The role of embodied scaffolding in revealing “enac-tive potentialities” in intergenerational science exploration. Science Education, 108(2), 495-523. https://doi.org/10.1002/sce.21845
Osborne, J., & Pimentel, D. (2023). Science education in an age of misinformation. Science Education, 107(3), 553–571. https://doi.org/10.1002/sce.21790
Park, S., & Kim, Y. (2024). Exploring the Educational Necessity of Physical Activity in Young Children Through Preservice Early Childhood Teachers’ Perceptions of Changes in Early Childhood Physical Activity Education in South Korea. Journal of Teaching in Physical Education, 1(aop), 1-8. https://doi.org/10.1123/jtpe.2023-0376
Purnomo, E., Jermaina, N., Marheni, E., Gumilar, A., Widarsa, A. H., Elpatsa, A., & Abidin, N. E. Z. (2024). Enhancing problem-solving skills through physical education learning: a comprehensive analy-sis. Retos, 58, 435-444. http://dx.doi.org/10.47197/retos.v58.106838
Quigley, C. F., & Herro, D. (2019). An educator's guide to steam: Engaging students using real-world problems. Teachers College Press.
Shi, P., & Liu, W. (2025). Adaptive learning oriented higher educational classroom teaching strate-gies. Scientific Reports, 15(1), 15661. https://doi.org/10.1038/s41598-025-00536-y
Shoshani, A. (2025). The impact of touch screen tablet caring games on empathic concern and compas-sion in young children. International Journal of Human–Computer Interaction, 41(1), 51-68. https://doi.org/10.1080/10447318.2023.2295683
Subban, P., Suprayogi, M. N., Preston, M., Liyani, A. N., & Ratri, A. P. P. (2024). “Differentiation is Some-times a Hit and Miss”. Educator Perceptions of Differentiated Instruction in the Higher Educa-tion Sector. The Asia-Pacific Education Researcher, 1-12. https://doi.org/10.1007/s40299-024-00904-8
Subramaniam, R. C., Morphew, J. W., Rebello, C. M., & Rebello, N. S. (2025). Presenting STEM ways of a thinking framework for engineering design-based physics problems. Physical Review Physics Education Research, 21(1), 010122. https://doi.org/10.1103/PhysRevPhysEducRes.21.010122
Sun, H., Du, C. R., & Wei, Z. F. (2024). Physical education and student well-being: Promoting health and fitness in schools. Plos one, 19(1), e0296817.
Sunzuma, G., Mutseekwa, C., Zezekwa, N., & Chikerema, T. (2025). Empowering Transformation Through STEAM: Equity, Justice, and Community Innovation. Deep Science Publishing.
Thoma, R., Farassopoulos, N., & Lousta, C. (2023). Teaching STEAM through universal design for learn-ing in early years of primary education: Plugged-in and unplugged activities with emphasis on connectivism learning theory. Teaching and Teacher Education, 132, 104210. https://doi.org/10.1016/j.tate.2023.104210
Toivo, K., Vähä-Ypyä, H., Kannus, P., Tokola, K., Alanko, L., Heinonen, O. J., ... & Vasankari, T. (2023). Physical activity measured by accelerometry among adolescents participating in sports clubs and non-participating peers. European journal of sport science, 23(7), 1426-1434. https://doi.org/10.1080/17461391.2022.2103740
Tomlinson, C. A. (2017). How to differentiate instruction in academically diverse classrooms. Ascd.
Tomlinson, C. A., & Imbeau, M. B. (2023). Leading and managing a differentiated classroom. Ascd.
Tong, D. H., Uyen, B. P., & Ngan, L. K. (2022). The effectiveness of blended learning on students' aca-demic achievement, self-study skills and learning attitudes: A quasi-experiment study in teach-ing the conventions for coordinates in the plane. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12657
Tumiran, M. A. (2024). How to deal with insufficient sample size due to non-response in sur-veys?. Quantum Journal of Social Sciences and Humanities, 5(2), 70-86. https://doi.org/10.55197/qjssh.v5i2.346
Valencia, S., Steidl, M., Rivera, M., Bennett, C., Bigham, J., & Admoni, H. (2021, October). Aided nonver-bal communication through physical expressive objects. In Proceedings of the 23rd Interna-tional ACM SIGACCESS Conference on Computers and Accessibility (pp. 1-11).
Van Sluijs, E. M., Ekelund, U., Crochemore-Silva, I., Guthold, R., Ha, A., Lubans, D., ... & Katzmarzyk, P. T. (2021). Physical activity behaviours in adolescence: current evidence and opportunities for in-tervention. The Lancet, 398(10298), 429-442.
Varas, D., Santana, M., Nussbaum, M., Claro, S., & Imbarack, P. (2023). Teachers’ strategies and chal-lenges in teaching 21st century skills: Little common understanding. Thinking Skills and Crea-tivity, 48, 101289. https://doi.org/10.1016/j.tsc.2023.101289
Velempini, K. (2025). Assessing the role of environmental education practices towards the attainment of the 2030 sustainable development goals. Sustainability, 17(5), 2043.
https://doi.org/10.3390/su17052043
Wild, A. (2021). Inclusive Outcomes: How One School Created a More Inclusive Program for Students with Emotional and Behavioral Disorders (Doctoral dissertation, Northeastern University).
Zhang, X., Hu, B. Y., Zou, X., & Ren, L. (2020). Parent–child number application activities predict chil-dren’s math trajectories from preschool to primary school. Journal of Educational Psychology, 112(8), 1521–1531. https://doi.org/10.1037/edu0000457
Zhu, C., Leung, C. O. Y., Lagoudaki, E., Velho, M., Segura-Caballero, N., Jolles, D., ... & Klapwijk, R. (2023). Fostering spatial ability development in and for authentic STEM learning. In Frontiers in Education, 8, p. 1138607). Frontiers Media SA.
https://doi.org/10.3389/feduc.2023.1138607
Zhumabay, N., Yelemessova, Z., Balta, N., Abylkassymova, A., Bakytkazy, T., & Marynowski, R. (2024, March). Designing effective STEM courses: A mixed-methods study of the impact of a STEM education course on teachers’ self-efficacy and course experiences. Frontiers in Education, 9, p. 1276828). Frontiers Media SA. https://doi.org/10.3389/feduc.2024.1276828
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Arfilia Wjayanti, Wiyanto Wiyanto, Saiful Ridlo, Parmin Parmin

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess