El efecto de la actividad física en proyectos STEAM diferenciados en el aprendizaje de ciencias y el desarrollo de habilidades del siglo XXI

Autores/as

  • Arfilia Wijayanti Universitas Negeri Semarang https://orcid.org/0000-0002-7539-4601
  • Wiyanto Wiyanto Universitas Negeri Semarang, Indonesia
  • Saiful Ridlo Universitas Negeri Semarang, Indonesia
  • Parmin Parmin Universitas Negeri Semarang, Indonesia

DOI:

https://doi.org/10.47197/retos.v70.116789

Palabras clave:

Actividad física, Proyecto STEAM diferenciado, Aprendizaje de ciencias, Habilidades del siglo XXI

Resumen

Objetivo: Este estudio compara proyectos STEAM diferenciados en el aprendizaje de ciencias mediante experimentos científicos, la integración de STEAM y la integración de la actividad física, así como las percepciones de los estudiantes sobre el papel de la actividad física. Este estudio también examina cómo estas actividades físicas motivan a los niños y desarrollan habilidades del siglo XXI como el trabajo en equipo, la creatividad y el pensamiento crítico.

Método: Este estudio utiliza enfoques mixtos. La actividad física, la motivación y las habilidades del siglo XXI de los estudiantes se evaluaron mediante un cuestionario de escala Likert. Otros métodos incluyen rúbricas de evaluación de proyectos y notas de observación para evaluar objetivamente las habilidades del siglo XXI, y el análisis de documentos de planificación de proyectos para la comparación de modelos STEAM. Los datos cualitativos se evaluaron temáticamente, mientras que los cuantitativos se analizaron descriptivamente (promedio, desviación estándar, frecuencia). La triangulación combinó datos de múltiples fuentes.

Resultados: Los proyectos STEAM físicamente activos proporcionan una experiencia de aprendizaje más completa e inmersiva que otros métodos. A los estudiantes les gustaron las actividades físicas del proyecto. Las puntuaciones más altas de actividad física se corresponden con una mejor comprensión de las ciencias (β = 0,68, R² ≈ 0,52). La actividad física potencia el trabajo en equipo, el pensamiento crítico y la creatividad (β = 0,50, R² ≈ 0,25, 0,65, 0,42, 0,56, 0,33).

Conclusión: El proyecto STEAM variado con actividades físicas mejora la percepción del alumnado y el conocimiento científico y de habilidades del siglo XXI. La actividad física potencia el aprendizaje y ayuda a dominar el contenido y las habilidades.

Citas

Afzal, A., Kamran, F., & Naseem, A. (2023). The role of teachers in fostering critical thinking skills at the university level. Qlantic Journal of Social Sciences and Humanities, 4(3), 202-214. https://doi.org/10.55737/qjssh.409505257

Al-Kamzari, F., & Alias, N. (2025). A systematic literature review of project-based learning in second-ary school physics: theoretical foundations, design principles, and implementation strategies. Humanities and Social Sciences Communications, 12(1), 1-18. https://doi.org/10.1057/s41599-025-04579-4

Alkhatib, O. J. (2025). STEAM Integration and Engineering: Lessons from Transformative Approaches. In Transformative Approaches to STEAM Integration in Modern Education (pp. 345-374). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-8822-5.ch015

Alley, S., Plotnikoff, R. C., Duncan, M. J., Short, C. E., Mummery, K., To, Q. G., ... & Vandelanotte, C. (2023). Does matching a personally tailored physical activity intervention to participants’ learning style improve intervention effectiveness and engagement?. Journal of Health Psychol-ogy, 28(10), 889-899. https://doi.org/10.1177/13591053221137184

Al-Thani, N. J., & Ahmad, Z. (2025). Learning through “Research Cognitive Theory”: A new framework for developing 21st century research skills in secondary school students. Heliyon, 11(2). https://doi.org/10.1016/j.heliyon.2025.e41950

Al-Thani, N. J., & Ahmad, Z. (2025). Driving Project-Based Learning and Problem-Based Learning Through Research in Middle Schools. In Teaching and Learning with Research Cognitive Theo-ry (pp. 45-58). Springer, Cham. https://doi.org/10.1007/978-3-031-87544-1_3

Alves‐Oliveira, P., Arriaga, P., Xavier, C., Hoffman, G., & Paiva, A. (2022). Creativity landscapes: Sys-tematic review spanning 70 years of creativity interventions for children. The Journal of Crea-tive Behavior, 56(1), 16-40. https://doi.org/10.1002/jocb.514

Al-Wardat, M., Salimei, C., Alrabbaie, H., Etoom, M., Khashroom, M., Clarke, C., ... & Best, T. (2024). Ex-ploring the links between physical activity, emotional regulation, and Mental Well-being in Jor-danian University students. Journal of Clinical Medicine, 13(6), 1533. https://doi.org/10.3390/jcm13061533

Ardenlid, F., Lundqvist, J., & Sund, L. (2025). A scoping review and thematic analysis of differentiated instruction practices: How teachers foster inclusive classrooms for all students, including gifted students. International Journal of Educational Research Open, 8, 100439. https://doi.org/10.1016/j.ijedro.2025.100439

Arroyo-Rojas, F., & Hodge, S. R. (2024). Perspectives on inclusion in physical education from faculty and students at three physical education teacher education programs in Chile. Journal of Teach-ing in Physical Education, 43(4), 636-644. DOI: https://doi.org/10.1123/jtpe.2023-0126

Aubert, S., Barnes, J. D., Demchenko, I., Hawthorne, M., Abdeta, C., Abi Nader, P., ... & Tremblay, M. S. (2022). Global matrix 4.0 physical activity report card grades for children and adolescents: re-sults and analyses from 57 countries. Journal of Physical Activity and Health, 19(11), 700-728. https://doi.org/10.1123/jpah.2022-0456

Bhuttah, T. M., Xusheng, Q., Abid, M. N., & Sharma, S. (2024). Enhancing student critical thinking and learning outcomes through innovative pedagogical approaches in higher education: the medi-ating role of inclusive leadership. Scientific Reports, 14(1), 24362. https://doi.org/10.1038/s41598-024-75379-0

Behnamnia, N., Kamsin, A., Ismail, M. A. B., & Hayati, S. A. (2025). Relationship between creative think-ing and outcomes in a digital STEM-based learning environment: A mixed methods case study. Thinking Skills and Creativity, 57, 101816. https://doi.org/10.1016/j.tsc.2025.101816

Carter, C., Barnett, H., Burns, K., Cohen, N., Gazulla, E. D., Nack, F., ... & Ussher, S. (2021). Defining STEAM approaches for higher education. European Journal of STEM Education, 6(1), 1-16. https://doi.org/10.20897/ejsteme/11354

Cardiff, G., Ní Chróinín, D., Bowles, R., Fletcher, T., & Beni, S. (2023). ‘Just let them have a say!’Students’ perspective of student voice pedagogies in primary physical education. Irish Educational Stud-ies, 42(4), 659-676. https://doi.org/10.1080/03323315.2023.2255987

Chattaraj, D., & Vijayaraghavan, A. P. (2021). The mobility paradigm in higher education: a phenome-nological study on the shift in learning space. Smart Learning Environments, 8(1), 15. https://doi.org/10.1186/s40561-021-00162-x

Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (science, tech-nology, engineering, arts, and mathematics). Oxford research encyclopedia of education. https://doi.org/10.1093/acrefore/9780190264093.013.398

Cooper, G., Tang, KS. (2024). Pixels and Pedagogy: Examining Science Education Imagery by Genera-tive Artificial Intelligence. J Sci Educ Technol 33, 556–568. https://doi.org/10.1007/s10956-024-10104-0

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage publi-cations.

Dong, S., Zhi, R., & Gan, F. (2025). Integrating Robotics in Art Education: Leveraging Constructivist and Experiential Learning Frameworks to Enhance Cognitive Development, Problem‐Solving Skills and Collaboration Among Diverse Learners. European Journal of Education, 60(2), e70114. https://doi.org/10.1111/ejed.70114

Edelsbrunner, P. A., Schumacher, R., Hänger-Surer, B., Schalk, L., & Stern, E. (2024). Preparation for future conceptual learning: Content-specific long-term effects of early physics instruction. Journal of Educational Psychology, 116(8), 1479–1499. https://doi.org/10.1037/edu0000887

Ernawati, M. D. W., Rusdi, M., Asrial, A., Muhaimin, M., Wulandari, M., & Maryani, S. (2022). Analysis of Problem Based Learning in the Scaffolding Design: Students' Creative-Thinking Skills. Cypriot Journal of Educational Sciences, 17(7), 2333-2348. https://doi.org/10.18844/cjes.v17i7.7551

Estaiteyeh, M., & DeCoito, I. (2023). Planning for differentiated instruction: Empowering teacher can-didates in STEM education. Canadian Journal of Science, Mathematics and Technology Educa-tion, 23(1), 5-26. https://doi.org/10.1007/s42330-023-00270-5

Evans, Retta R., and Sandra K. Sims. (2025). Health and physical education for elementary classroom teachers: An integrated approach. Human Kinetics.

Fizi, R. M., Winarni, S., & Hartanto, A. (2023). A game model in physical education to improve motor skills, cooperation, and discipline of primary school learners. Pedagogy of Physical Culture and Sports, 27(6), 448-455. https://doi.org/10.15561/26649837.2023.0602

Gheyssens, E., Coubergs, C., Griful-Freixenet, J., Engels, N., & Struyven, K. (2022). Differentiated in-struction: the diversity of teachers’ philosophy and praxis to adapt teaching to students’ inter-ests, readiness and learning profiles. International Journal of Inclusive Education, 26(14), 1383-1400. https://doi.org/10.1080/13603116.2020.1812739

Gillespie, A., Glăveanu, V., & de Saint Laurent, C. (2024). Pragmatism and methodology: Doing research that matters with mixed methods. Cambridge University Press.

Goyibova, N., Muslimov, N., Sabirova, G., Kadirova, N., & Samatova, B. (2025). Differentiation approach in education: Tailoring instruction for diverse learner needs. MethodsX, 103163. https://doi.org/10.1016/j.mex.2025.103163

Syaipul Hayat, M., Sumarno, S., Qotrun Nada, N., & Yunus, M. (2025). Integración de la actividad física y los STEAM-SDG basados en Edupas para concienciar a los estudiantes sobre la sostenibilidad en la formación profesional. Retos, 64, 520–531. https://doi.org/10.47197/retos.v64.109836

Hellison, D., Wright, P. M., Martinek, T. J., & Walsh, D. S. (2025). Teaching personal and social responsi-bility through physical activity. Human Kinetics.

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM

and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education, 9(1), 58. https://doi.org/10.1186/s40594-022-00375-7

Javali, P., Raj, R. G., Shaw, S., Devi, C. H., Kumar, A., Andy, A., ... & Tharayil, A. S. (2025). Virtual Labs and Simulation Tools: Enhancing STEM Education. In Revolutionizing Education With Remote Experimentation and Learning Analytics (pp. 607-632). IGI Global Scientific Publishing. http://dx.doi.org/10.4018/979-8-3693-8593-7.ch035

Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for STEAM educa-tion—A case study. Education Sciences, 10(8), 198. https://doi.org/10.3390/educsci10080198

Kohl III, H. W., Murray, T. D., & Salvo, D. (2025). Foundations of physical activity and public health. Human Kinetics.

Kessler, T. C., Boice, K. L., Koval, J., Jackson, J. R., Choi, J., Alemdar, M., ... & Usselman, M. (2024). Part-nerships in STEAM: How collaborating with STEAM experts impacts K-12 teachers’ abilities to implement STEAM lessons in the classroom. Education Sciences, 14(6), 666. https://doi.org/10.3390/educsci14060666

Latino, F., & Tafuri, F. (2024). Physical activity and cognitive functioning. Medicina, 60(2), 216. https://doi.org/10.3390/medicina60020216

Leavy, A., Dick, L., Meletiou‐Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The preva-lence and use of emerging technologies in STEAM education: A systematic review of the litera-ture. Journal of Computer Assisted Learning, 39(4), 1061-1082. https://doi.org/10.1111/jcal.12806

Lieberman, L. J., Houston-Wilson, C., & Grenier, M. (2024). Strategies for inclusion: Physical education for everyone. Human Kinetics USA.

Lin, C. L., & Tsai, C. Y. (2021). The effect of a pedagogical STEAM model on students’ project compe-tence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x

Mao, F., Huang, F., Zhao, S., & Fang, Q. (2024). Effects of cognitively engaging physical activity inter-ventions on executive function in children and adolescents: A systematic review and meta-analysis. Frontiers in Psychology, 15, 1454447. https://doi.org/10.3389/fpsyg.2024.1454447

McMahon, A. K., & McMahon, D. D. (2020). Flipping Physical Education Classrooms for Grades K–12. Flipped Classrooms with Diverse Learners: International Perspectives, 105-120. https://doi.org/10.1007/978-981-15-4171-1_6

Makuvire, C., Chikuvadze, P., Dziva, D., Mudavanhu, Y., & Mhishi, M. (2025). Transforming Science Ed-ucation Through Arts: Opportunities and Challenges of STEAM Education. Transformative Ap-proaches to STEAM Integration in Modern Education, 583-606. https://doi.org/10.4018/979-8-3693-7408-5.ch024

Mang, H. M. A., Chu, H. E., Martin, S. N., & Kim, C. J. (2023). Developing an evaluation rubric for plan-ning and assessing SSI-based steam programs in science classrooms. Research in Science Edu-cation, 53(6), 1119-1144. https://doi.org/10.1007/s11165-023-10123-8

Marouli, C. (2021). Sustainability education for the future? Challenges and implications for education and pedagogy in the 21st century. Sustainability, 13(5), 2901. https://doi.org/10.3390/su13052901

Martinez, C. (2022). Developing 21st century teaching skills: A case study of teaching and learning through project-based curriculum. Cogent Education, 9(1), 2024936. https://doi.org/10.1080/2331186X.2021.2024936

Mercan, Z., & Kandır, A. (2024). The effect of the Early STEAM Education Program on the visual-spatial reasoning skills of children: research from Turkey. Education, 52(2), 123-153. https://doi.org/10.1080/03004279.2022.2075906

Meydan, C. H., & Akkaş, H. (2024). The role of triangulation in qualitative research: Converging per-spectives. In Principles of Conducting Qualitative Research in Multicultural Settings (pp. 98-129). IGI Global. https://doi.org/10.4018/979-8-3693-3306-8.ch006

Moon, J., & Park, Y. (2022). Exploring south Korean elementary school classroom teachers’ beliefs and practices in physical education. International Journal of Environmental Research and Public Health, 19(22), 15033. https://doi.org/10.3390/ijerph192215033

Newman, T. (2020). Collaboration is uncomfortable. International Journal of Art & Design Educa-tion, 39(4), 788-794. https://doi.org/10.1111/jade.12323

Niklasson, A., Maher, J., Patil, R., Sillén, H., Chen, J., Gwaltney, C., & Rydén, A. (2022). Living with heart failure: patient experiences and implications for physical activity and daily living. ESC heart failure, 9(2), 1206-1215. https://doi.org/10.1002/ehf2.13795

Novak, M., & Schwan, S. (2021). Does touching real objects affect learning?. Educational Psychology Review, 33(2), 637-665. https://doi.org/10.1007/s10648-020-09551-z

Nygren, M. O., Price, S., & Thomas Jha, R. (2024). The role of embodied scaffolding in revealing “enac-tive potentialities” in intergenerational science exploration. Science Education, 108(2), 495-523. https://doi.org/10.1002/sce.21845

Osborne, J., & Pimentel, D. (2023). Science education in an age of misinformation. Science Education, 107(3), 553–571. https://doi.org/10.1002/sce.21790

Park, S., & Kim, Y. (2024). Exploring the Educational Necessity of Physical Activity in Young Children Through Preservice Early Childhood Teachers’ Perceptions of Changes in Early Childhood Physical Activity Education in South Korea. Journal of Teaching in Physical Education, 1(aop), 1-8. https://doi.org/10.1123/jtpe.2023-0376

Purnomo, E., Jermaina, N., Marheni, E., Gumilar, A., Widarsa, A. H., Elpatsa, A., & Abidin, N. E. Z. (2024). Enhancing problem-solving skills through physical education learning: a comprehensive analy-sis. Retos, 58, 435-444. http://dx.doi.org/10.47197/retos.v58.106838

Quigley, C. F., & Herro, D. (2019). An educator's guide to steam: Engaging students using real-world problems. Teachers College Press.

Shi, P., & Liu, W. (2025). Adaptive learning oriented higher educational classroom teaching strate-gies. Scientific Reports, 15(1), 15661. https://doi.org/10.1038/s41598-025-00536-y

Shoshani, A. (2025). The impact of touch screen tablet caring games on empathic concern and compas-sion in young children. International Journal of Human–Computer Interaction, 41(1), 51-68. https://doi.org/10.1080/10447318.2023.2295683

Subban, P., Suprayogi, M. N., Preston, M., Liyani, A. N., & Ratri, A. P. P. (2024). “Differentiation is Some-times a Hit and Miss”. Educator Perceptions of Differentiated Instruction in the Higher Educa-tion Sector. The Asia-Pacific Education Researcher, 1-12. https://doi.org/10.1007/s40299-024-00904-8

Subramaniam, R. C., Morphew, J. W., Rebello, C. M., & Rebello, N. S. (2025). Presenting STEM ways of a thinking framework for engineering design-based physics problems. Physical Review Physics Education Research, 21(1), 010122. https://doi.org/10.1103/PhysRevPhysEducRes.21.010122

Sun, H., Du, C. R., & Wei, Z. F. (2024). Physical education and student well-being: Promoting health and fitness in schools. Plos one, 19(1), e0296817.

Sunzuma, G., Mutseekwa, C., Zezekwa, N., & Chikerema, T. (2025). Empowering Transformation Through STEAM: Equity, Justice, and Community Innovation. Deep Science Publishing.

Thoma, R., Farassopoulos, N., & Lousta, C. (2023). Teaching STEAM through universal design for learn-ing in early years of primary education: Plugged-in and unplugged activities with emphasis on connectivism learning theory. Teaching and Teacher Education, 132, 104210. https://doi.org/10.1016/j.tate.2023.104210

Toivo, K., Vähä-Ypyä, H., Kannus, P., Tokola, K., Alanko, L., Heinonen, O. J., ... & Vasankari, T. (2023). Physical activity measured by accelerometry among adolescents participating in sports clubs and non-participating peers. European journal of sport science, 23(7), 1426-1434. https://doi.org/10.1080/17461391.2022.2103740

Tomlinson, C. A. (2017). How to differentiate instruction in academically diverse classrooms. Ascd.

Tomlinson, C. A., & Imbeau, M. B. (2023). Leading and managing a differentiated classroom. Ascd.

Tong, D. H., Uyen, B. P., & Ngan, L. K. (2022). The effectiveness of blended learning on students' aca-demic achievement, self-study skills and learning attitudes: A quasi-experiment study in teach-ing the conventions for coordinates in the plane. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12657

Tumiran, M. A. (2024). How to deal with insufficient sample size due to non-response in sur-veys?. Quantum Journal of Social Sciences and Humanities, 5(2), 70-86. https://doi.org/10.55197/qjssh.v5i2.346

Valencia, S., Steidl, M., Rivera, M., Bennett, C., Bigham, J., & Admoni, H. (2021, October). Aided nonver-bal communication through physical expressive objects. In Proceedings of the 23rd Interna-tional ACM SIGACCESS Conference on Computers and Accessibility (pp. 1-11).

Van Sluijs, E. M., Ekelund, U., Crochemore-Silva, I., Guthold, R., Ha, A., Lubans, D., ... & Katzmarzyk, P. T. (2021). Physical activity behaviours in adolescence: current evidence and opportunities for in-tervention. The Lancet, 398(10298), 429-442.

Varas, D., Santana, M., Nussbaum, M., Claro, S., & Imbarack, P. (2023). Teachers’ strategies and chal-lenges in teaching 21st century skills: Little common understanding. Thinking Skills and Crea-tivity, 48, 101289. https://doi.org/10.1016/j.tsc.2023.101289

Velempini, K. (2025). Assessing the role of environmental education practices towards the attainment of the 2030 sustainable development goals. Sustainability, 17(5), 2043.

https://doi.org/10.3390/su17052043

Wild, A. (2021). Inclusive Outcomes: How One School Created a More Inclusive Program for Students with Emotional and Behavioral Disorders (Doctoral dissertation, Northeastern University).

Zhang, X., Hu, B. Y., Zou, X., & Ren, L. (2020). Parent–child number application activities predict chil-dren’s math trajectories from preschool to primary school. Journal of Educational Psychology, 112(8), 1521–1531. https://doi.org/10.1037/edu0000457

Zhu, C., Leung, C. O. Y., Lagoudaki, E., Velho, M., Segura-Caballero, N., Jolles, D., ... & Klapwijk, R. (2023). Fostering spatial ability development in and for authentic STEM learning. In Frontiers in Education, 8, p. 1138607). Frontiers Media SA.

https://doi.org/10.3389/feduc.2023.1138607

Zhumabay, N., Yelemessova, Z., Balta, N., Abylkassymova, A., Bakytkazy, T., & Marynowski, R. (2024, March). Designing effective STEM courses: A mixed-methods study of the impact of a STEM education course on teachers’ self-efficacy and course experiences. Frontiers in Education, 9, p. 1276828). Frontiers Media SA. https://doi.org/10.3389/feduc.2024.1276828

Descargas

Publicado

2025-08-05

Cómo citar

Wijayanti, A., Wiyanto, W., Ridlo, S., & Parmin, P. (2025). El efecto de la actividad física en proyectos STEAM diferenciados en el aprendizaje de ciencias y el desarrollo de habilidades del siglo XXI. Retos, 70, 1079–1096. https://doi.org/10.47197/retos.v70.116789

Número

Sección

Experiencias didácticas desarrollas e investigadas con trabajo empírico