Physiological mechanisms of increasing maximal oxygen volume through small sided games training: a systematic review
DOI:
https://doi.org/10.47197/retos.v69.116525Keywords:
SSG, physical fitness, vo2max, physical exerciseAbstract
Background. An athlete's maximal oxygen capacity, or VO2max, is a crucial measure of their aerobic performance. Since small-sided games (SSG) incorporate tactical, technical, and physical components all at once, they have gained popularity as a teaching tool. According to a number of studies, SSG can raise VO2max by inducing physiological stimuli including elevated heart rate and oxygen consumption. As a result, it's critical to thoroughly examine the physiological processes that underlie the rise in VO2max brought about by SSG training. Objective. This study sought to ascertain whether playing small-sided games increased VO2Max. Materials and methods. For our systematic review investigation, we examined several literature databases, such as Pubmed, Scopus, Web of Science, and Science Direct. We searched for literature published between 2020 and 2025 that discussed VO2Max and small-sided games. Another 664 published papers were found using the databases Scopus, Web of Science, Pubmed, and Science Direct. Ten papers that met the inclusion criteria were selected and reviewed for this systematic review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used in this study to assess standard operating procedures. Results. Ten studies that have been examined have demonstrated that training with small-sided games significantly raises VO2Max.
Conclusions. The results of this systematic study indicate that playing small-sided games has been demonstrated to raise VO2Max. For athletes and sportsmen, it can be an alternate suggestion in an attempt to raise VO2Max through small-sided game training.
References
Aguiar, M., Gonçalves, B., Botelho, G., Lemmink, K., & Sampaio, J. (2015). Footballers’ movement behaviour during 2-, 3-, 4- and 5-a-side small-sided games. Journal of Sports Sciences, 33(12), 1259–1266. https://doi.org/10.1080/02640414.2015.1022571
Alok Kumar Yadav, J. G. B. (2017). Effect of Vitex trifolia Linn and Solanum nigrum Linn on oxidative. Indian Journal of Health Sciences and Biomedical Research KLEU, 11(1), 269–275. https://doi.org/10.4103/kleuhsj.kleuhsj
Arslanoglu, C., Celgin, G. S., Arslanoglu, E., Demirci, N., Karakas, F., Dogan, E., … Kucuk, H. (2024). An Effective Method of Aerobic Capacity Development: Combined Training with Maximal Aerobic Speed and Small-Sided Games for Amateur Football Players. Applied Sciences (Switzerland), 14(19). https://doi.org/10.3390/app14199134
Astorino, T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., … Wood, K. M. (2017). High-Intensity Interval Training Increases Cardiac Output and V-O2max. Medicine and Science in Sports and Exercise, 49(2), 265–273. https://doi.org/10.1249/MSS.0000000000001099
Bach Padilha, M., Guilherme, J., Serra-Olivares, J., Roca, A., & Teoldo, I. (2017). The influence of floaters on players’ tactical behaviour in small-sided and conditioned soccer games. International Journal of Performance Analysis in Sport, 17(5), 721–736. https://doi.org/10.1080/24748668.2017.1390723
Badari, T. P., Machado, G., Moniz, F., Fontes, A., & Teoldo, I. (2021). Comparison of Soccer players’ tactical behaviour in small-sided games according to match status. Journal of Physical Education and Sport, 21(1), 12–20. https://doi.org/10.7752/jpes.2021.01002
Chandra, K., Kusuma, A., Artanayasa, I. W., & Agung, A. (2025). Journal Sport Area Combined small-sided games and resistance training : Acute impact on physical capacity in young soccer players. Journal Sport Area, 10(1), 12–24.
Clemente, F. M. (2025). The enjoyment of small-sided games: a narrative review. Human Movement, 26(1), 1–14. https://doi.org/10.5114/hm/197230
Clemente, F. M., Afonso, J., Castillo, D., Arcos, A. L., Silva, A. F., & Sarmento, H. (2020a). The effects of small-sided soccer games on tactical behavior and collective dynamics: A systematic review. Chaos, Solitons and Fractals, 134(3), 100–119. https://doi.org/10.1016/j.chaos.2020.109710
Clemente, F. M., Afonso, J., Castillo, D., Arcos, A. L., Silva, A. F., & Sarmento, H. (2020b). The effects of small-sided soccer games on tactical behavior and collective dynamics: A systematic review. Chaos, Solitons and Fractals, 134, 109710. https://doi.org/10.1016/j.chaos.2020.109710
Clemente, F. M., Afonso, J., & Sarmento, H. (2021). Small-sided games: An umbrella review of systematic reviews and meta-analyses. PLoS ONE, 16(2 Febuary), 1–22. https://doi.org/10.1371/journal.pone.0247067
Clemente, F. M., Wong, D. P., Martins, F. M. L., & Mendes, R. S. (2014). Acute effects of the number of players and scoring method on physiological, physical, and technical performance in small-sided soccer games. Research in Sports Medicine, 22(4), 380–397. https://doi.org/10.1080/15438627.2014.951761
Crowley, E., Powell, C., Carson, B. P., & W. Davies, R. (2022). The Effect of Exercise Training Intensity on VO2max in Healthy Adults: An Overview of Systematic Reviews and Meta-Analyses. Translational Sports Medicine, 2022, 1–10. https://doi.org/10.1155/2022/9310710
da Silva Soares, D. B., Shinjo, S. K., Santos, A. S., de Cassia Rosa de Jesus, J., Schenk, S., de Castro, G. S., … de Sousa, M. V. (2022). Skeletal muscle gene expression in older adults with type 2 diabetes mellitus undergoing calorie-restricted diet and recreational sports training - a randomized clinical trial. Experimental Gerontology, 164(May). https://doi.org/10.1016/j.exger.2022.111831
Davids, K., Araújo, D., Correia, V., & Vilar, L. (2013). How small-sided and conditioned games enhance acquisition of movement and decision-making skills. Exercise and Sport Sciences Reviews, 41(3), 154–161. https://doi.org/10.1097/JES.0b013e318292f3ec
Fitrian, Z. A., Graha, A. S., Nasrulloh, A., & Asmara, M. (2023). The Positive Impact of Small-Sided Games Training on VO2 max and Passing Accuracy in Futsal Players. International Journal of Human Movement and Sports Sciences, 11(1), 233–240. https://doi.org/10.13189/saj.2023.110127
Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology, 590(5), 1077–1084. https://doi.org/10.1113/jphysiol.2011.224725
Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K., & Bishop, D. J. (2016). Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB Journal, 30(10), 3413–3423. https://doi.org/10.1096/fj.201500100R
Hammami, A., Kasmi, S., Farinatti, P., Fgiri, T., Chamari, K., & Bouhlel, E. (2017). Blood pressure, heart rate & perceived enjoyment after small-sided soccer games & repeated sprint in untrained healthy adolescents. Biology of Sport, 34(3), 219–225. https://doi.org/10.5114/biolsport.2017.65997
Hill-Haas, S., Dawson, B., Impellizzeri, F., & Coutts, A. (2011). Physiology of Small-Sided Games Training. Journal of Sports Medicine, 41(3), 199–220.
Hornstrup, T., Póvoas, S., Helge, J. W., Melcher, P. S., Fristrup, B., Andersen, J. L., … Krustrup, P. (2020). Cardiovascular and metabolic health effects of team handball training in overweight women: Impact of prior experience. Scandinavian Journal of Medicine and Science in Sports, 30(2), 281–294. https://doi.org/10.1111/sms.13563
J, C., D, C., & A, D. (2013). Influence of Game Format and Number of Players on Heart Rate Responses and Physical Demands in Small-Sided Soccer Games. Journal of Strength and Conditioning Research, 27(5), 1295–1303.
Jacobs, R. A., Flück, D., Bonne, T. C., Bürgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of Applied Physiology, 115(6), 785–793. https://doi.org/10.1152/japplphysiol.00445.2013
JAMEL HALOUANI, HAMDI CHTOUROU, TIM GABBETT, ANIS CHAOUACHI, K. C. (2014). SMALL-SIDED GAMES IN TEAM SPORTS TRAINING: ABRIEF REVIEW. Journal of Strength and Conditioning Research.
Karahan, M. (2020). Effect of skill-based training vs. small-sided games on physical performance improvement in young soccer players. Biology of Sport, 37(3), 305–312. https://doi.org/10.5114/biolsport.2020.96319
Krustrup, P., Dvorak, J., & Bangsbo, J. (2016). Small-sided football in schools and leisure-time sport clubs improves physical fitness, health profile, well-being and learning in children. British Journal of Sports Medicine, 50(19), 1166–1167. https://doi.org/10.1136/bjsports-2016-096266
Lacome. (2018). Small-Sided Games in elite soccer: Does one size fits all? International Journal, 14(2), 156‐162. Retrieved from https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01787161/full
Li, T., Xu, Q., Wang, S., Qi, K., Su, P., Silva, R. M., … Clemente, F. M. (2023). Effects of recreational small-sided games from different team sports on the improvement of aerobic fitness in youth sedentary populations: A systematic review. Heliyon, 9(11), 1–13. https://doi.org/10.1016/j.heliyon.2023.e22041
Luo, H., Newton, R. U., Ma’Ayah, F., Galvão, D. A., & Taaffe, D. R. (2018). Recreational soccer as sport medicine for middle-aged and older adults: A systematic review. BMJ Open Sport and Exercise Medicine, 4(1), 1–13. https://doi.org/10.1136/bmjsem-2017-000336
Ma, M. K., G, V. K., & Vinu, W. (2025). The Influence of Small-Sided Games and Floaters Intervention on Physical Components of Soccer Players. Physical Education Theory and Methodology, 7989, 357–365. https://doi.org/10.17309/tmfv.2025.2.17
Mendham, A. E., Duffield, R., Marino, F., & Coutts, A. J. (2015). Differences in the acute inflammatory and glucose regulatory responses between small-sided games and cycling in sedentary, middle-aged men. Journal of Science and Medicine in Sport, 18(6), 714–719. https://doi.org/10.1016/j.jsams.2014.09.008
Montero, D., & Díaz-Cañestro, C. (2016). Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction. European Journal of Preventive Cardiology, 23(7), 733–743. https://doi.org/10.1177/2047487315617118
Norrahmah, F., Zalillah, S. I., Made, I. D., & Wijaya, A. (2025). Using Small-Sided Games or Their Combination with Speed Endurance Training : Which Is More Effective for Improving Aerobic Capacity in Young Amateur League Soccer Players ? Physical Education Theory and Methodology, 7989, 486–491. https://doi.org/10.17309/tmfv.2025.3.02
Pratama, R. R., Fikri, A., Lubis, J., Samsudin, Widiastuti, Arisman, & Muslimin. (2024). The Effectiveness of Small Side Games in Increasing the Vo2Max Ability of Football Athletes. International Journal of Human Movement and Sports Sciences, 12(1), 1–8. https://doi.org/10.13189/saj.2024.120101
Randers, M. B., Hagman, M., Christensen, J. F., Póvoas, S., Nielsen, J. J., & Krustrup, P. (2024). Health and performance effects of 12 weeks of small-sided street football training compared to grass football training in habitually active young men. European Journal of Applied Physiology, 124(3), 805–813. https://doi.org/10.1007/s00421-023-05308-y
Riboli, A., Esposito, F., & Coratella, G. (2023). Technical and locomotor demands in elite soccer: manipulating area per player during small-sided games to replicate official match demands. Biology of Sport, 40(3), 639–647. https://doi.org/10.5114/biolsport.2023.118338
Rocco, G., Gatani, T., Di Maio, M., Meoli, I., La Rocca, A., Martucci, N., … Stefanelli, F. (2013). The impact of decreasing cutoff values for maximal oxygen consumption (vo2max) in the decision-making process for candidates to lung cancer surgery. Journal of Thoracic Disease, 5(1), 12–18. https://doi.org/10.3978/j.issn.2072-1439.2012.12.04
Sarmento, H., Clemente, F. M., Harper, L. D., Costa, I. T. da, Owen, A., & Figueiredo, A. J. (2018). Small sided games in soccer–a systematic review. International Journal of Performance Analysis in Sport, 18(5), 693–749. https://doi.org/10.1080/24748668.2018.1517288
Scribbans, T. D., Vecsey, S., Hankinson, P. B., Foster, W. S., & Gurd, B. J. (2016). The Effect of Training Intensity on VO2max in Young Healthy Adults: A Meta-Regression and Meta-Analysis. International Journal of Exercise Science, 9(2), 230–247. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27182424%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4836566
Seabra, A., Katzmarzyk, P., Carvalho, M. J., Seabra, A., Coelho-E-Silva, M., Abreu, S., … Malina, R. M. (2016). Effects of 6-month soccer and traditional physical activity programmes on body composition, cardiometabolic risk factors, inflammatory, oxidative stress markers and cardiorespiratory fitness in obese boys. Journal of Sports Sciences, 34(19), 1822–1829. https://doi.org/10.1080/02640414.2016.1140219
Selmi, O., Ouergui, I., Levitt, D. E., Nikolaidis, P. T., Knechtle, B., & Bouassida, A. (2020). Small-Sided Games are More Enjoyable Than High-Intensity Interval Training of Similar Exercise Intensity in Soccer. Open Access Journal of Sports Medicine, 11, 77–84. https://doi.org/10.2147/OAJSM.S244512
Setiakarnawijaya, Y., Taufik, M. S., Widiastuti, Hasyim, Mulya, G., Yuliana, E., … Hanief, Y. N. (2022). The effect of modification small side games using the NAZ app to improve the futsal athlete’s vo2max performance. Journal of Physical Education and Sport, 22(12), 3195–3199. https://doi.org/10.7752/jpes.2022.12406
Silva, P., Vilar, L., Davids, K., Araújo, D., & Garganta, J. (2016). Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games. SpringerPlus, 5(1), 1–10. https://doi.org/10.1186/s40064-016-1813-5
Srivastava, S., Tamrakar, S., Nallathambi, N., Vrindavanam, S. A., Prasad, R., & Kothari, R. (2024). Assessment of Maximal Oxygen Uptake (VO2 Max) in Athletes and Nonathletes Assessed in Sports Physiology Laboratory. Cureus, (May). https://doi.org/10.7759/cureus.61124
Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439–1447. https://doi.org/10.1152/japplphysiol.01098.2006
Thompson, W. R. (2023). Worldwide Survey of Fitness Trends for 2023. ACSM’s Health and Fitness Journal, 27(1), 9–18. https://doi.org/10.1249/FIT.0000000000000834
Vasconcellos, F., Seabra, A., Cunha, F., Montenegro, R., Penha, J., Bouskela, E., … Farinatti, P. (2016). Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. Journal of Sports Sciences, 34(6), 564–575. https://doi.org/10.1080/02640414.2015.1064150
Wibawa, J. C., Febrianto, N., Fudin, M. S., Ockta, Y., & Festiawan, R. (2025). El mecanismo del ejercicio físico aumenta la glutatión peroxidasa como antioxidante endógeno: una revisión sistemática. Retos, 63, 610–619. https://doi.org/10.47197/retos.v63.108856
Wibawa, J. C., Hariyadi, K., Sceisarriya, V. M., Swasono, B. A., Ayubi, N., & Aljunaid, M. A. (2024). Effect of giving rosella flower extract ( hibiscus sabdariffa ) after physical exercise on uric acid levels in healthy men. Fizjoterapiapolska.
Xu, Q., Qi, K., Liu, G., Li, T. Y., & Clemente, F. M. (2024). Effects of a 16-week recreational small-sided games soccer intervention on body composition and physical fitness in sedentary young adults: A randomized controlled study. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25242
Zaharia, G., Badau, D., Tudor, V., Costache, R., Geambasu, A., Damian, M., … Tifrea, C. (2023). The Effects of 8 Aerobic Endurance Training Weeks of 4vs.4+GK Small-Sided Games versus Traditional Training on Physical Fitness and Skills among U18 Football Players. Applied Sciences (Switzerland), 13(13). https://doi.org/10.3390/app13137963
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Muhyi, Suharti Suharti, Puspodari Puspodari, Akhmad Syarif, Baskoro Nugroho Putro, Junian Cahyanto Wibawa, Novadri Ayubi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.