Perfiles in silico de ácidos fenólicos para la prevención de cálculos biliares: una base para estudios in vitro en actividad física intensa y pérdida de peso rápida

Autores/as

  • Sridevi Rajendran SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.
  • Chitra Vellapandian SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

DOI:

https://doi.org/10.47197/retos.v68.116454

Palabras clave:

ADMET, ácidos fenólicos, acoplamiento molecular, ácido sinápico, ácidos fenólicos, actividad física, enfermedad de cálculos biliares, medicina deportiva, metabolismo de los ácidos biliares, pérdida de peso rápida

Resumen

Antecedentes: La colelitiasis se observa cada vez con más frecuencia en personas con pérdida de peso rápida o alto estrés físico, como los deportistas. Las terapias existentes, como el ácido ursodesoxicólico, tienen una eficacia limitada, lo que ha suscitado interés en opciones naturales más seguras.

Objetivo: Evaluar el potencial anticolelitiasis de ácidos fenólicos seleccionados mediante acoplamiento molecular y perfil farmacocinético.

Metodología: Se realizaron acoplamiento molecular, análisis ADMET y simulaciones de dinámica molecular para los ácidos sinápico, p-cumárico, cafeico y ferúlico, centrándose en dianas implicadas en la regulación del colesterol y los ácidos biliares (LXR, FXR, PPAR-γ, NPC1L1). Las herramientas utilizadas fueron AutoDock 4.2, SwissADME y GROMACS 2019.4.

Resultados: El ácido sinápico mostró la unión más fuerte con el LXR (-6,65 kcal/mol), lo que sugiere un aumento en la eliminación del colesterol, mientras que el ácido p-cumárico mostró una interacción significativa con el FXR (-4,86 kcal/mol), lo que implica un papel en la regulación de los ácidos biliares. Ambos compuestos mostraron una unión estable y una farmacocinética favorable con baja toxicidad.

Conclusión: Los ácidos sinápico y p-cumárico parecen prometedores para la prevención de cálculos biliares, especialmente en personas activas o con pérdida de peso rápida, lo que justifica la realización de más estudios in vitro, in vivo y clínicos.

Biografía del autor/a

Sridevi Rajendran, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

Departamento de Farmacología, Facultad de Farmacia SRM, Facultad de Medicina y Ciencias de la Salud, Instituto de Ciencia y Tecnología SRM, Kattankulathur, Chennai, Tamil Nadu.

Chitra Vellapandian, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu.

Departamento de Farmacología, Facultad de Farmacia SRM, Facultad de Medicina y Ciencias de la Salud, Instituto de Ciencia y Tecnología SRM, Kattankulathur, Chennai, Tamil Nadu.

Citas

Lammert, F., Gurusamy, K., Ko, C. W., Miquel, J.-F., Méndez-Sánchez, N., Portincasa, P., van Erpecum, K. J., van Laarhoven, C. J., & Wang, D. Q.-H. . (2016). Gallstones. Nature Reviews Disease Primers, 2(1). https://doi.org/10.1038/nrdp.2016.24

Stinton, L. M., Myers, R. P., & Shaffer, E. A. (2010). Epidemiology of Gallstones. Gastroenterology Clinics, 39(2), 157–169. https://doi.org/10.1016/j.gtc.2010.02.003

Shabanzadeh, D. M., Skaaby, T., Sørensen, L. T., & Jørgensen, T. (2017). Screen-detected gallstone disease and cardiovascular disease. European Journal of Epidemiology, 32(6), 501–510. https://doi.org/10.1007/s10654-017-0263-x

Shabanzadeh, D. M., Sørensen, L. T., & Jørgensen, T. (2017). Association Between Screen-Detected Gall-stone Disease and Cancer in a Cohort Study. Gastroenterology, 152(8), 1965-1974.e1. https://doi.org/10.1053/j.gastro.2017.02.013

Zheng, Y., Xu, M., Heianza, Y., Ma, W., Wang, T., Sun, D., Albert, C. M., Hu, F. B., Rexrode, K. M., Manson, J. E., & Qi, L. (2018). Gallstone disease and increased risk of mortality: Two large prospective studies in US men and women. Journal of Gastroenterology and Hepatology, 33(11), 1925–1931. https://doi.org/10.1111/jgh.14264

Shi, C., Liu, X., Xie, Z., Sun, H., Hao, C., Xue, D., & Meng, X. (2023). Lifestyle factors and the risk of gall-stones: results from the national health and nutrition examination survey 2018–2020 and men-delian randomization analysis. Scandinavian Journal of Gastroenterology, 1–9. https://doi.org/10.1080/00365521.2023.2197093

Parra-Landazury, N., Cordova-Gallardo, J., & Méndez-Sánchez, N. (2021). Obesity and Gallstones. Vis-ceral Medicine, 37(5), 1–9. https://doi.org/10.1159/000515545

Lin, I-Ching., Yang, Y.-W., Wu, M.-F., Yeh, Y.-H., Liou, J.-C., Lin, Y.-L., & Chiang, C.-H. (2014). The associa-tion of metabolic syndrome and its factors with gallstone disease. BMC Family Practice, 15(1). https://doi.org/10.1186/1471-2296-15-138

Di Ciaula, A., Wang, D. Q.-H. ., & Portincasa, P. (2018). An update on the pathogenesis of cholesterol gall-stone disease. Current Opinion in Gastroenterology, 34(2), 71–80. https://doi.org/10.1097/mog.0000000000000423

Pathogenesis of cholesterol and pigment gallstones: An update. (2011). Clinics and Research in Hepa-tology and Gastroenterology, 35(4), 281–287. https://doi.org/10.1016/j.clinre.2011.01.009

Ilton, E. (2024, March 22). The Link Between Gallstones, Obesity, and Weight Loss. Every-dayHealth.com. https://www.everydayhealth.com/gallbladder/symptoms/link-between-gallstones-obesity-weight-loss/

Yang, H., Petersen, G. M., Roth, M.-P., Schoenfield, L. J., & Marks, J. W. (1992). Risk factors for gallstone formation during rapid loss of weight. Digestive Diseases and Sciences, 37(6), 912–918. https://doi.org/10.1007/bf01300390

Weinsier, R. L., & Ullmann, D. O. (1993). Gallstone Formation and Weight Loss. Obesity Research, 1(1), 51–56. https://doi.org/10.1002/j.1550-8528.1993.tb00008.x

Alizadeh Pahlavani, H., & Veisi, A. (2025). Possible consequences of the abuse of anabolic steroids on different organs of athletes. Archives of Physiology and Biochemistry, 1–18. https://doi.org/10.1080/13813455.2025.2459283

Johansson, K., Sundström, J., Marcus, C., Hemmingsson, E., & Neovius, M. (2013). Risk of symptomatic gallstones and cholecystectomy after a very-low-calorie diet or low-calorie diet in a commer-cial weight loss program: 1-year matched cohort study. International Journal of Obesity, 38(2), 279–284. https://doi.org/10.1038/ijo.2013.83

Yuksel Bicilioglu; Karakoyun, Miray; Emel Atas Berksoy; Anil, Murat (2017). Cholelithiasis Developing after Rapid Weight Loss in an Adolescent - ProQuest. 36-37. https://doi.org/10.4274/cayd.92005

Ribeiro, M. A., Tebar, G. K., Niero, H. B., & Pacheco, L. S. (2024). Biliary complications associated with weight loss, cholelithiasis and choledocholithiasis. World Journal of Gastrointestinal Pharma-cology and Therapeutics, 15(4). https://doi.org/10.4292/wjgpt.v15.i4.95647

John Hopkins Medicine. (2020). Gallstones. Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/gallstones

Festi, D., Montagnani, M., Azzaroli, F., Lodato, F., Mazzella, G., Roda, A., Di Biase, A. R., Roda, E., Simoni, P., & Colecchia, A. (2007). Clinical efficacy and effectiveness of ursodeoxycholic acid in cholestatic liver diseases. Current Clinical Pharmacology, 2(2), 155–177. https://doi.org/10.2174/157488407780598171

Ursodeoxycholic Acid. (2019). Singhealth.com.sg. https://www.singhealth.com.sg/patient-care/medicine/ursodeoxycholic-acid

Guarino, M. P. L., Cocca, S., Altomare, A., Emerenziani, S., & Cicala, M. (2013). Ursodeoxycholic acid therapy in gallbladder disease, a story not yet completed. World Journal of Gastroenterology : WJG, 19(31), 5029–5034. https://doi.org/10.3748/wjg.v19.i31.5029

1mg.com. (2021). Ursodeoxycholic Acid: View Uses, Side Effects and Medicines | 1mg. 1mg. https://www.1mg.com/generics/ursodeoxycholic-acid-210886

Mohammadine Moumou, Amani Tayebi, Abderrahmane Hadini, Noman, O. M., Abdulsalam Alhalmi, Hamza Ahmoda, Amrani, S., & Hicham Harnafi. (2025). Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites, 15(1), 36–36. https://doi.org/10.3390/metabo15010036

Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24(e00370), e00370. https://doi.org/10.1016/j.btre.2019.e00370

Asma Arrout, Yassine El Ghallab, Yafout, M., Mohammed Rachid Lefriyekh, & Ait, A. (2024). Medicinal plants for gallstones: A cross-sectional survey of Moroccan patients. Phytomedicine Plus, 4(1), 100524–100524. https://doi.org/10.1016/j.phyplu.2024.100524

Chambers, K. F., Day, P. E., Aboufarrag, H. T., & Kroon, P. A. (2019). Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients, 11(11), 2588. https://doi.org/10.3390/nu11112588

Ansari, M. A., Raish, M., Bin Jardan, Y. A., Ahmad, A., Shahid, M., Ahmad, S. F., Haq, N., Khan, M. R., & Bak-heet, S. A. (2021). Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced fulmi-nant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 pathways. World Journal of Gastroenterology, 27(7), 592–608. https://doi.org/10.3748/wjg.v27.i7.592

Chen, C. (2016). Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Medicine and Cellular Longevity, 2016, 1–10. https://doi.org/10.1155/2016/3571614

Kannakazhi Kantari, S. A., Kanchi, S., Patnaik, B., & Agraharam, A. (2024). Computational Exploration of Phenolic Compounds from Endophytic Fungi as α-Glucosidase Inhibitors for Diabetes Man-agement. ACS Omega, 10(1), 1279–1292. https://doi.org/10.1021/acsomega.4c08872

Horowitz, J. F., & Klein, S. (2000). Lipid metabolism during endurance exercise. The American Journal of Clinical Nutrition, 72(2), 558S563S. https://doi.org/10.1093/ajcn/72.2.558s

Zhu, J.-Y., & Guo, L. (2024). Exercise-regulated lipolysis: Its role and mechanism in health and diseases. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.11.031

Thompson, D., Karpe, F., Lafontan, M., & Frayn, K. (2012). Physical Activity and Exercise in the Regula-tion of Human Adipose Tissue Physiology. Physiological Reviews, 92(1), 157–191. https://doi.org/10.1152/physrev.00012.2011

See Young Lee, Sung Ill Jang, Jae Hee Cho, Min Young Do, Su Yeon Lee, Choi, A., Hye Sun Lee, Yang, J., & Dong Ki Lee. (2024). Gallstone Dissolution Effects of Combination Therapy with n-3 Polyun-saturated Fatty Acids and Ursodeoxycholic Acid: A Randomized, Prospective, Preliminary Clin-ical Trial. Gut and Liver. https://doi.org/10.5009/gnl230494

Portincasa, P., Di Ciaula, A., Bonfrate, L., & Wang, D. Q. (2012). Therapy of gallstone disease: What it was, what it is, what it will be. World journal of gastrointestinal pharmacology and therapeu-tics, 3(2), 7-20. https://doi.org/10.4292/wjgpt.v3.i2.7

Lazaridis, K. N., Gores, G. J., & Lindor, K. D. (2001). Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” Journal of Hepatology, 35(1), 134–146. https://doi.org/10.1016/S0168-8278(01)00092-7

Shahidi, F., & Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4. https://doi.org/10.31665/jfb.2018.4162

Descargas

Publicado

2025-06-25

Cómo citar

Rajendran, S., & Vellapandian, C. (2025). Perfiles in silico de ácidos fenólicos para la prevención de cálculos biliares: una base para estudios in vitro en actividad física intensa y pérdida de peso rápida. Retos, 68, 2042–2057. https://doi.org/10.47197/retos.v68.116454

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas