Efecto del ejercicio aeróbico y el extracto etanólico de salvado de arroz sobre la actividad de Akt/mTOR y el estrés oxidativo en los músculos esqueléticos en un modelo de rata con obesidad inducida por una dieta rica en grasas

Autores/as

  • Mojgan Eftekharzadeh Islamic Azad University
  • Sirvan Atashak Azad University
  • Lidia Moradi Azad University
  • Saleh Rahmati Islamic Azad University https://orcid.org/0000-0001-8751-1759
  • Reza Ghafarzadegan Institute of Medicinal Plants
  • Hedieh Tousi Islamic Azad University
  • Enrique Roche Miguel Hernández University https://orcid.org/0000-0001-5128-1672
  • Diego Fernández Lázaro Universidad de Valladolid https://orcid.org/0000-0002-6522-8896
  • Mohammad Ali Azarbayjani Universtity of Valladolid

DOI:

https://doi.org/10.47197/retos.v70.115323

Palabras clave:

Ejercicio aeróbico, Ak/mTOR, Estrés oxidativo, Salvado de arroz

Resumen

Introducción y Objetivo: Resistencia a la insulina es una complicación clave asociada a obesidad. Salvado de arroz y ejercicio parecen métodos efectivos para reducir estas complicaciones. El objetivo del estudio fue determinar efectos del ejercicio aeróbico (EX) y extracto de salvado de arroz (RB) en la expresión de genes Akt/mTOR y marcadores de estrés oxidativo en músculo esquelético de ratas alimentadas con dieta alta en grasas (HFD).

Metodología: Treinta ratas Wistar hembras distribuidas aleatoriamente en cinco grupos: control dieta normal (ND-Con), control HFD (HFD-Con), HFD-ejercicio aeróbico (EX), HFD-extracto de RB (RB) y HFD-EX-RB. Los grupos EX corrieron en cinta cinco veces por semana durante cuatro semanas, y los grupos RB recibieron 60 mg/kg/día de extracto de RB. Finalmente, las ratas fueron eutanasiadas y se extrajeron los músculos cuádriceps, determinando expresión de Akt/mTOR y marcadores de estrés oxidativo.

Resultados: HFD produjo disminución significativa en la expresión de Akt, mTOR, y actividades de superóxido dismutasa (SOD) y catalasa, aumentando la concentración de malondialdehído (MDA). EX mostró aumento significativo en la expresión de Akt/mTOR, sin efectos en RB. La expresión de Akt fue significativamente mayor en EX-RB que en HFD-CON. EX no afectó a SOD. RB causó un aumento significativo en SOD en comparación con HFD-Con. La actividad de catalasa en EX, RB y EX-RB fue significativamente mayor que en HFD-Con. La concentración de MDA en EX, RB y EX-RB fue significativamente menor que en HFD-Con.

Conclusiones: EX y RB pueden ser tratamientos adecuados para reducir complicaciones de HFD en tejido muscular esquelético.

Citas

Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Cabello-Verrugio C. (2018). Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev, 2018, 2063179. doi:10.1155/2018/2063179

Ahmed MA, Mohamed MA, Rashed LA, Abd Elbast SA, & Ahmed EA. (2018). Rice Bran Oil Improves In-sulin Resistance by Affecting the Expression of Antioxidants and Lipid-Regulatory Genes. Lipids, 53(5), 505-515. doi:10.1002/lipd.12045

Alizadeh Pahlavani H. (2022). Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne), 13, 811751. doi:10.3389/fendo.2022.811751

Anderson SR, Gilge DA, Steiber AL, & Previs SF. (2008). Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice. Metabolism, 57(3), 347-354. doi:10.1016/j.metabol.2007.10.009

Bae JY, Shin KO, Woo J, Woo SH, Jang KS, Lee YH, & Kang S. (2016). Exercise and dietary change amelio-rate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. J Exerc Nutrition Biochem, 20(2), 28-33. doi:10.20463/jenb.2016.06.20.2.4

Balage M, Sinaud S, Prod'homme M, Dardevet D, Vary TC, Kimball SR, . . . Grizard J. (2001). Amino acids and insulin are both required to regulate assembly of the eIF4E. eIF4G complex in rat skeletal muscle. Am J Physiol Endocrinol Metab, 281(3), E565-574. doi:10.1152/ajpendo.2001.281.3.E565

Bashan N, Kovsan J, Kachko I, Ovadia H, & Rudich A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev, 89(1), 27-71. doi:10.1152/physrev.00014.2008

Buege JA, & Aust SD. (1978). [30] Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Eds.), Methods in Enzymology (Vol. 52, pp. 302-310): Academic Press.

Feng L, Li B, Xi Y, Cai M, & Tian Z. (2022). Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol, 322(2), C164-c176. doi:10.1152/ajpcell.00344.2021

Ferretti R, Moura EG, Dos Santos VC, Caldeira EJ, Conte M, Matsumura CY, . . . Mosqueira M. (2018). High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PLoS One, 13(10), e0199728. doi:10.1371/journal.pone.0199728

Fiorentino VT, Prioletta A, Zuo P, & Folli F. (2013). Hyperglycemia-induced Oxidative Stress and its Role in Diabetes Mellitus Related Cardiovascular Diseases. Current Pharmaceutical Design, 19(32), 5695-5703. doi:http://dx.doi.org/10.2174/1381612811319320005

Fletcher E, Wiggs M, Greathouse KL, Morgan G, & Gordon PM. (2022). Impaired proteostasis in obese skeletal muscle relates to altered immunoproteasome activity. Appl Physiol Nutr Metab, 47(5), 555-564. doi:10.1139/apnm-2021-0764

Guillet C, & Boirie Y. (2005). Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab, 31 Spec No 2, 5s20-25s26. doi:10.1016/s1262-3636(05)73648-x

Heo JW, Yoo SZ, No MH, Park DH, Kang JH, Kim TW, . . . Kwak HB. (2018). Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle. Int J Environ Res Public Health, 15(10). doi:10.3390/ijerph15102301

Huang P-X, Yeh C-L, Yang S-C, Shirakawa H, Chang C-L, Chen L-H, Chiu Y-S, Chiu W-C. (2023). Rice Bran Supplementation Ameliorates Gut Dysbiosis and Muscle Atrophy in Ovariectomized Mice Fed with a High-Fat Diet. Nutrients, 15(16), 3514. https://doi.org/10.3390/nu15163514

Justo, M. L., Candiracci, M., Dantas, A. P., de Sotomayor, M. A., Parrado, J., Vila, E., ... & Rodriguez-Rodriguez, R. (2013). Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress. The Journal of Nutritional Biochemistry, 24(8), 1453-1461. https://doi.org/10.1016/j.jnutbio.2012.12.004

Karnia MJ, Myslinska D, Dzik KP, Flis DJ, Ciepielewski ZM, Podlacha M, & Kaczor JJ. (2018). The Electri-cal Stimulation of the Bed Nucleus of the Stria Terminalis Causes Oxidative Stress in Skeletal Muscle of Rats. Oxid Med Cell Longev, 2018, 4671213. doi:10.1155/2018/4671213

Kirwan JP, del Aguila LF, Hernandez JM, Williamson DL, O'Gorman DJ, Lewis R, & Krishnan RK. (2000). Regular exercise enhances insulin activation of IRS-1-associated PI3-kinase in human skeletal muscle. J Appl Physiol (1985), 88(2), 797-803. doi:10.1152/jappl.2000.88.2.797

Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, & Pithon-Curi TC. (2007). Effects of aerobic ex-ercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev, 128(3), 267-275. doi:10.1016/j.mad.2006.12.006

Law, B. M., Waye, M. M., So, W. K., & Chair, S. Y. (2017). Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. International Journal of Molecular Sciences, 18(7), 1352. doi:10.3390/ijms18071352

Lawler JM, Kwak HB, Song W, & Parker JL. (2006). Exercise training reverses downregulation of HSP70 and antioxidant enzymes in porcine skeletal muscle after chronic coronary artery occlusion. Am J Physiol Regul Integr Comp Physiol, 291(6), R1756-1763. doi:10.1152/ajpregu.00271.2006

Lee S, Kim MB, Kim C, & Hwang JK. (2018). Whole grain cereal attenuates obesity-induced muscle atro-phy by activating the PI3K/Akt pathway in obese C57BL/6N mice. Food Sci Biotechnol, 27(1), 159-168. doi:10.1007/s10068-017-0277-x

Li G, Liu JY, Zhang HX, Li Q, & Zhang SW. (2015). Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity. Physiol Res, 64(3), 355-367. doi:10.33549/physiolres.932851

Liu R, Xu Y, Chang M, Tang L, Lu M, Liu R, . . . Wang X. (2021). Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem, 343, 128431. doi:10.1016/j.foodchem.2020.128431

Mascher H, Andersson H, Nilsson PA, Ekblom B, & Blomstrand E. (2007). Changes in signalling path-ways regulating protein synthesis in human muscle in the recovery period after endurance ex-ercise. Acta Physiol (Oxf), 191(1), 67-75. doi:10.1111/j.1748-1716.2007.01712.x

Mattei L, Francisqueti-Ferron FV, Garcia JL, Ferron AJT, Silva C, Gregolin CS, . . . Corrêa CR. (2021). Anti-oxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol Cell Endocrinol, 537, 111423. doi:10.1016/j.mce.2021.111423

Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, . . . Kohno N. (2008). Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabo-lism, 57(2), 170-176. doi:10.1016/j.metabol.2007.08.021

Od-Ek P, Deenin W, Malakul W, Phoungpetchara I, & Tunsophon S. (2020). Anti-obesity effect of Carica papaya in high-fat diet fed rats. Biomed Rep, 13(4), 30. doi:10.3892/br.2020.1337

Ou Y, Jobu K, Ishida T, Morisawa S, Fujita H, Kawada K, . . . Miyamura M. (2022). Saikokeishikankyoto extract alleviates muscle atrophy in KKAy mice. Journal of Natural Medicines, 76(2), 379-388. doi:10.1007/s11418-021-01590-2

Papaconstantinou J. (2009). Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol, 299(1), 89-100. doi:10.1016/j.mce.2008.11.025

Pedrini MT, Kranebitter M, Niederwanger A, Kaser S, Engl J, Debbage P, . . . Patsch JR. (2005). Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia, 48(4), 756-766. doi:10.1007/s00125-005-1684-8

Pereira MG, Voltarelli VA, Tobias GC, de Souza L, Borges GS, Paixão AO, . . . Brum PC. (2021). Aerobic Exercise Training and In Vivo Akt Activation Counteract Cancer Cachexia by Inducing a Hyper-trophic Profile through eIF-2α Modulation. Cancers (Basel), 14(1). doi:10.3390/cancers14010028

Roy B, Curtis ME, Fears LS, Nahashon SN, & Fentress HM. (2016). Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol, 7, 439. doi:10.3389/fphys.2016.00439

Saji N, Francis N, Schwarz LJ, Blanchard CL, & Santhakumar AB. (2020). The Antioxidant and Anti-Inflammatory Properties of Rice Bran Phenolic Extracts. Foods, 9(6). doi:10.3390/foods9060829

Silveira LR, Fiamoncini J, Hirabara SM, Procópio J, Cambiaghi TD, Pinheiro CH, . . . Curi R. (2008). Updat-ing the effects of fatty acids on skeletal muscle. J Cell Physiol, 217(1), 1-12. doi:10.1002/jcp.21514

Tang L, Cao W, Zhao T, Yu K, Sun L, Guo J, . . . Ta D. (2021). Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats. Journal of Physiology and Biochemistry, 77(2), 273-281. doi:10.1007/s13105-021-00794-0

Tremblay F, & Marette A. (2001). Amino acid and insulin signaling via the mTOR/p70 S6 kinase path-way. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem, 276(41), 38052-38060. doi:10.1074/jbc.M106703200

Ugwoke CK, Cvetko E, & Umek N. (2022). Skeletal Muscle Microvascular Dysfunction in Obesity-Related Insulin Resistance: Pathophysiological Mechanisms and Therapeutic Perspectives. Int J Mol Sci, 23(2). doi:10.3390/ijms23020847

Ulbricht ASSF, Lima DD-d, Werlang-Coelho C, Magro DD-D, Donat B, Vieira MR, . . . Pereira EM. (2019). Effects of aerobic exercise training on oxidative stress in the skeletal muscles of obese rats. Revista Brasileira de Medicina do Esporte, 25, 404-408. doi:10.1590/1517-869220192505184278

Vasilaki A, McArdle F, Iwanejko LM, & McArdle A. (2006). Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev, 127(11), 830-839. doi:10.1016/j.mad.2006.08.004

Vlavcheski F, Den Hartogh DJ, Giacca A, & Tsiani E. (2020). Amelioration of High-Insulin-Induced Skele-tal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restora-tion of GLUT4 Translocation. Nutrients, 12(4). doi:10.3390/nu12040914

Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, . . . Liu YP. (2022). The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tol-erance. J Diabetes Res, 2022, 3780156. doi:10.1155/2022/3780156

Wycherley TP, Brinkworth GD, Noakes M, Buckley JD, & Clifton PM. (2008). Effect of caloric re-striction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab, 10(11), 1062-1073. doi:10.1111/j.1463-1326.2008.00863.x

Zhang J, Zhuang P, Wang Y, Song L, Zhang M, Lu Z, . . . Li H. (2014). Reversal of muscle atrophy by Zhi-mu-Huangbai herb-pair via Akt/mTOR/FoxO3 signal pathway in streptozotocin-induced dia-betic mice. PLoS One, 9(6), e100918. doi:10.1371/journal.pone.0100918

Descargas

Publicado

2025-08-29

Cómo citar

Eftekharzadeh, M., Atashak, S., Moradi, L., Rahmati, S., Ghafarzadegan, R., Tousi, H., … Azarbayjani, M. A. (2025). Efecto del ejercicio aeróbico y el extracto etanólico de salvado de arroz sobre la actividad de Akt/mTOR y el estrés oxidativo en los músculos esqueléticos en un modelo de rata con obesidad inducida por una dieta rica en grasas. Retos, 70, 1586–1596. https://doi.org/10.47197/retos.v70.115323

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas