El entrenamiento de fuerza y la suplementación con picolinato de cromo no reducen la adiposidad ni mejoran la morfología muscular en ratas obesas

Autores/as

DOI:

https://doi.org/10.47197/retos.v70.114584

Palabras clave:

Picolinato de cromo, dietas hipercalóricas, ratas, entrenamiento de fuerza, obesidad

Resumen

Introducción: La obesidad ocasiona disfunciones metabólicas, como resistencia a la insulina y dislipidemia, que perjudican la remodelación y función del músculo esquelético. El entrenamiento de fuerza contrarresta estos efectos al mejorar el control glucémico, reducir la adiposidad y aumentar la masa muscular. El picolinato de cromo (CrPic), suplemento para optimizar la señalización de insulina y la síntesis proteica, se promociona para mejorar la composición corporal. Aunque estudios mecanicistas apuntan a beneficios de CrPic, la evidencia sobre su eficacia es limitada, sobre todo en combinación con entrenamiento de fuerza. El impacto conjunto de esta asociación en la morfología muscular y los parámetros metabólicos en obesidad no se ha definido.

Objetivo: Investigar los efectos del entrenamiento de fuerza con suplementación de CrPic sobre morfología del músculo esquelético, adiposidad, perfil lipídico y tolerancia a la glucosa en ratas obesas.

Metodología: Protocolo de 22 semanas en tres fases: inducción de obesidad, mantenimiento y fase de intervención con entrenamiento de fuerza y/o CrPic. Las ratas realizaron entrenamiento de fuerza tres veces por semana y recibieron CrPic por sonda orogástrica.

Resultados: La combinación de entrenamiento y CrPic no redujo adiposidad ni mejoró intolerancia a la glucosa o resistencia a la insulina. En bioquímica, el grupo con entrenamiento y CrPic mostró mayor HDLc, indicando efecto positivo atribuible al entrenamiento de fuerza. Ni el entrenamiento ni CrPic causaron cambios morfológicos en músculos esqueléticos.

Conclusión: En este modelo, el entrenamiento de fuerza con CrPic no es eficaz para reducir adiposidad ni aumentar masa muscular.

Citas

Albarello, R. A., Boufleur Farinha, J., Reckelberg Azambuja, C., & Lopes dos Santos, D. (2017). Efeitos do treinamento resistido sobre o perfil lipídico de indivíduos com síndrome metabólica. Revista Andaluza de Medicina del Deporte, 10(3), 142–146. https://doi.org/10.1016/j.ramd.2014.11.004

Anton, S. D., Morrison, C. D., Cefalu, W. T., Martin, C. K., Coulon, S., Geiselman, P., Han, H., White, C. L., & Williamson, D. A. (2008). Effects of chromium picolinate on food intake and satiety. Diabetes Technology & Therapeutics, 10(5), 405–412. https://doi.org/10.1089/dia.2007.0292

Arabzadeh, E., Rahimi, A., Zargani, M., Feyz Simorghi, Z., Emami, S., Sheikhi, S., Zaeri Amirani, Z., You-sefi, P., Sarshin, A., Aghaei, F., & Feizolahi, F. (2022). Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP 43 regula-tion in animal model of traumatic nerve injuries. Neuroscience Letters, 787, 136812. https://doi.org/10.1016/j.neulet.2022.136812

Beals, J. W., Skinner, S. K., McKenna, C. F., Poozhikunnel, E. G., Farooqi, S. A., van Vliet, S., Martinez, I. G., Ulanov, A. V., Li, Z., Paluska, S. A., & Burd, N. A. (2018). Altered anabolic signalling and redu-ced stimulation of myofibrillar protein synthesis after feeding and resistance exercise in people with obesity. The Journal of Physiology, 596(21), 5119–5133. https://doi.org/10.1113/JP276210

Cardoso, J. C., Martins, V. V. P., Madureira, A. R., Sales, S. T., Filetti, F. M., Corrêa, C. R., Nogueira, B. V., Lima Leopoldo, A. P., & Leopoldo, A. S. (2023). A High-Fat Diet Induces Cardiac Damage in Obesity-Resistant Rodents with Reduction in Metabolic Health. Cellular Physiology & Bioche-mistry, 57(4), 264–278. https://doi.org/10.33594/000000642

Carbone, P. O., Krause, W., Gama, E. F., Silva, W. de A., Nobre, T. L., Caperuto, E. C., Mascaro, M. B., & Souza, R. R. de. (2017). Morphological adjustments of the radial nerve are intensity dependent. Revista Brasileira de Medicina do Esporte, 23, 55–59. https://doi.org/10.1590/1517-869220172301157903

Cefalu, W. T., Russell, J. C., et al. (2002). Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle GLUT 4 translocation in obese, hyperinsulinemic (JCR LA corpulent) rats. The Journal of Nutrition, 132(6),1107-1114. doi: 10.1093/jn/132.6.1107.

Chi, C. P., Hou, C. W., Wu, Y. Y., Wang, T. H., & Yu, S. H. (2020). Night time resistance exercise alters muscular IL 6 related protein signaling, but not muscle growth after 10 weeks of resistance training in male rats. General Physiology and Biophysics, 39(1), 89–98. https://doi.org/10.4149/gpb_2019047

Clarkson, P. M. (1997). Effects of exercise on chromium levels: Is supplementation required? Sports Medicine, 23(6), 341–349. https://doi.org/10.2165/00007256-199723060-00001

Contreiro, C. D. E., Caldas, L. C., Nogueira, B. V., Leopoldo, A. S., Lima Leopoldo, A. P., & Guimarães Fe-rreira, L. (2020). Strength training reduces fat accumulation and improves blood lipid profile even in the absence of skeletal muscle hypertrophy in high fat diet induced obese condition. Journal of Obesity, 2020, 20(1), 8010784. https://doi.org/10.1155/2020/8010784.

Coelho PM, Simmer LM, Madureira AR, Torezani-Sales S, Cardoso JC, Santos KCC, Kitagawa RR, Pezzin MF, Leopoldo AS, Lima-Leopoldo AP. (2025). Effect of Lychee Peel and Seed Flour Consump-tion on the Anti/Pro-Oxidant System and Cardiomyocyte Contractile Function. Cellular Physio-logy & Biochemistry, 59(3), 330-346. doi: 10.33594/000000777.

Cordeiro J, da Silva DS, Torezani-Sales S, Madureira AR, Claudio ERG, Bocalini DS, Lima-Leopoldo AP, Leopoldo AS. (2022). Resistance to obesity prevents obesity development without increasing spontaneous physical activity and not directly related to greater metabolic and oxidative ca-pacity. PLoS One, 17(8), e0271592. doi: 10.1371/journal.pone.0271592.

Damas, F., Libardi, C. A., & Ugrinowitsch, C. (2018). The development of skeletal muscle hypertrophy through resistance training: The role of muscle damage and muscle protein synthesis. Euro-pean Journal of Applied Physiology, 118(3), 485–500. https://doi.org/10.1007/s00421-017-3792-9

Damiani, A. P. L., Caldas, L. C., Melo, A. B., Contreiro, C. D. E., Estevam, W. M., Nogueira, B. V., Ferreira, L. G., Leopoldo, A. S., & Leopoldo, A. P. L. (2020). Resistance training protocols promote strength increase without morphological changes. Revista Brasileira de Medicina do Esporte, 26, 253–257. https://doi.org/10.1590/1517-869220202603209955

Dankel, S. N., Bjørndal, B., Lindquist, C., Grinna, M. L., Rossmann, C. R., Bohov, P., Nygård, O., Hallström, S., Strand, E., & Berge, R. K. (2021). Hepatic energy metabolism underlying differential lipido-mic responses to high carbohydrate and high fat diets in male Wistar rats. The Journal of Nutri-tion, 151(9), 2610–2621. https://doi.org/10.1093/jn/nxab178

Deschenes, M. R., Judelson, D. A., Kraemer, W. J., Meskaitis, V. J., Volek, J. S., Nindl, B. C., Harman, F. S., & Deaver, D. R. (2000). Effects of resistance training on neuromuscular junction morphology. Muscle & Nerve, 23(10), 1576–1581. https://doi.org/10.1002/1097-4598(200010)23:10<1576:AID MUS15>3.0.CO;2-J

DiSilvestro, R. A., & Dy, E. (2007). Comparison of acute absorption of commercially available chro-mium supplements. Journal of Trace Elements in Medicine and Biology, 21(2), 120–124. https://doi.org/10.1016/j.jtemb.2007.01.004

Dlamini, M., & Khathi, A. (2024). Investigating the effects of diet induced prediabetes on skeletal mus-cle strength in male Sprague Dawley rats. International Journal of Molecular Sciences, 25(7), 740. https://doi.org/10.3390/ijms25074076

Dong, F., Yang, X., Sreejayan, N., & Ren, J. (2007). Chromium (d phenylalanine)₃ improves obesity in-duced cardiac contractile defect in ob/ob mice. Obesity, 15(11), 2699–2711. https://doi.org/10.1038/oby.2007.322

Effting, P. S., Thirupathi, A., Müller, A. P., Pereira, B. C., Sepa Kishi, D. M., Marqueze, L. F. B., Vasconce-llos, F. T. F., Nesi, R. T., Pereira, T. C. B., Kist, L. W., Bogo, M. R., Ceddia, R. B., & Pinho, R. A. (2022). Resistance exercise training improves metabolic and inflammatory control in adipose and muscle tissues in mice fed a high fat diet. Nutrients, 14(11), 2179. https://doi.org/10.3390/nu14112179

Fox, C. S., Massaro, J. M., Hoffmann, U., Pou, K. M., Maurovich Horvat, P., Liu, C. Y., Vasan, R. S., Murabi-to, J. M., Meigs, J. B., Cupples, L. A., D’Agostino, R. B. Sr., & O’Donnell, C. J. (2007). Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk fac-tors in the Framingham Heart Study. Circulation, 116(1), 39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355

Francisqueti, F. V., Minatel, I. O., Ferron, A. J. T., Bazan, S. G. Z., Silva, V. D. S., Garcia, J. L., De Campos, D. H. S., Ferreira, A. L., Moreto, F., Cicogna, A. C., & Corrêa, C. R. (2017). Effect of gamma oryzanol as therapeutic agent to prevent cardiorenal metabolic syndrome in animals submitted to high sugar–fat diet. Nutrients, 9(12), 1299. https://doi.org/10.3390/nu9121299

Fraga, A. S., Ladeia, A. M. T., Sá, C. K. C. de, & Tenório, M. C. C. (2017). Efeito do exercício sobre os ní-veis de HDL C: Uma revisão sistemática de metanálises. Revista Brasileira de Medicina do Es-porte, 23, 488–494. https://doi.org/10.1590/1517-869220172306163603

Gregolin, C. S., do Nascimento, M., de Souza, S. L. B., Mota, G. A. F., Luvizotto, R. A. M., Sugizaki, M. M., Bazan, S. G. Z., de Campos, D. H. S., Camacho, C. R. C., Cicogna, A. C., & do Nascimento, A. F. (2024). Cardiac dysfunction in sucrose fed rats is associated with alterations of phospholamban phosphorylation and TNF α levels. Molecular and Cellular Endocrinology, 589, 112236. https://doi.org/10.1016/j.mce.2024.112236

Gomes, M. R., Rogero, M. M., & Tirapegui, J. (2005). Considerations about chromium, insulin and physi-cal exercise. Revista Brasileira de Medicina do Esporte, 11, 262–266. https://doi.org/10.1590/S1517-86922005000500003

Guedes, J. M., Pieri, B. L. da S., Luciano, T. F., Marques, S. de O., Guglielmo, L. G. A., & de Souza, C. T. (2019). Muscular resistance, hypertrophy and strength training equally reduce adiposity, in-flammation and insulin resistance in mice with diet induced obesity. Einstein, 18, eAO4784. https://doi.org/10.31744/einstein_journal/2020AO4784

Hornberger TA Jr, & Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. (2004). Canadian Journal of Applied Physiology, 29(1), 16-31. doi: 10.1139/h04-002.

Hung, A. T., Leury, B. J., Sabin, M. A., Fahri, F., DiGiacomo, K., Lien, T. F., & Dunshea, F. R. (2020). Nano chromium picolinate improves gene expression associated with insulin signaling in porcine skeletal muscle and adipose tissue. Animals, 10(9), 1685. https://doi.org/10.3390/ani10091685

Iossa, S., Lionetti, L., Mollica, M. P., Crescenzo, R., Barletta, A., & Liverini, G. (2000). Effect of long term high fat feeding on energy balance and liver oxidative activity in rats. British Journal of Nutri-tion, 84(3), 377–385. https://doi.org/10.1017/S0007114500001135

Kim, C.-H., Youn, J. H., Park, J.-Y., Hong, S. K., Park, K. S., Park, S. W., Suh, K. I., & Lee, K.-U. (2000). Ef-fects of high fat diet and exercise training on intracellular glucose metabolism in rats. American Journal of Physiology Endocrinology and Metabolism, 278(6), E977–E984. https://doi.org/10.1152/ajpendo.2000.278.6.E977

Kim, H. J., Kim, Y. J., Kim, I. Y., & Seong, J. K. (2022). Resistance exercise training induced skeletal mus-cle strength provides protective effects on high fat diet induced metabolic stress in mice. Labo-ratory Animal Research, 38(1), 36. https://doi.org/10.1186/s42826-022-00145-0

Komorowski JR, Tuzcu M, Sahin N, Juturu V, Orhan C, Ulas M, & Sahin K. (2012). Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biological Trace Element Research, 149(1), 50-56. doi: 10.1007/s12011-012-9393-x. Epub 2012 Mar 22. PMID: 22434381.

Krause Neto, W., Silva, W., Oliveira, T., Vilas Boas, A., Ciena, A., Caperuto, É. C., & Gama, E. F. (2024). Ladder based resistance training with the progression of training load altered the tibial nerve ultrastructure and muscle fiber area without altering the morphology of the postsynaptic com-partment. Frontiers in Physiology, 15, 1371839. https://doi.org/10.3389/fphys.2024.1371839

Krutki, P., Mrówczyński, W., Bączyk, M., Łochyński, D., & Celichowski, J. (2017). Adaptations of moto-neuron properties after weight lifting training in rats. Journal of Applied Physiology, 123(3), 664–673. https://doi.org/10.1152/japplphysiol.00121.2017

Laurindo, C. P., Gregorio, K. C. R., Moreno, A. C. R., Agostinho, J. M. V., Campos, E. C., Nai, G. A., Nunes, M. T., & Seraphim, P. M. (2021). Resistance training mitigates hepato cardiac changes and mus-cle mitochondrial protein reductions in rats with diet induced obesity. Heliyon, 7(11), e08374. https://doi.org/10.1016/j.heliyon.2021.e08374

Lee, J., Kim, D., & Kim, C. (2017). Resistance training for glycemic control, muscular strength, and lean body mass in old type 2 diabetic patients: A meta analysis. Diabetes Therapy, 8(3), 459–473. https://doi.org/10.1007/s13300-017-0258-3

Leite, R. D., Durigan, R. de C. M., de Souza Lino, A. D., de Souza Campos, M. V., das Graças Souza, M., Selistre de Araújo, H. S., Bouskela, E., & Kraemer Aguiar, L. G. (2013). Resistance training may concomitantly benefit body composition, blood pressure and muscle MMP 2 activity on the left ventricle of high fat fed diet rats. Metabolism, 62(10), 1477–1484. https://doi.org/10.1016/j.metabol.2013.05.010

Li, C., Li, N., Zhang, Z., Song, Y., Li, J., Wang, Z., Bo, H., & Zhang, Y. (2023). The specific mitochondrial unfolded protein response in fast and slow twitch muscles of high fat diet induced insulin resis-tant rats. Frontiers in Endocrinology, 14, 1127524. https://doi.org/10.3389/fendo.2023.1127524

Li, Y., Guo, W., Li, H., Wang, Y., Liu, X., & Kong, W. (2025). The change of skeletal muscle caused by inflammation in obesity as the key path to fibrosis: Thoughts on mechanisms and intervention strategies. Biomolecules, 15(1), 1. https://doi.org/10.3390/biom15010020

Liang M, Pan Y, Zhong T, Zeng Y, & Cheng ASK. (2021). Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: a systematic re-view and network meta-analysis. Reviews in Cardiovascular Medicine, 22(4), 1523-1533. doi: 10.31083/j.rcm2204156. PMID: 34957791.

Lima Leopoldo, A. P., Leopoldo, A. S., Da Silva, D. C. T., Do Nascimento, A. F., De Campos, D. H. S., Luvi-zotto, R. A. M., De Deus, A. F., Freire, P. P., Medeiros, A., Okoshi, K., & Cicogna, A. C. (2014a). Long term obesity promotes alterations in diastolic function induced by reduction of phospho-lamban phosphorylation at serine 16 without affecting calcium handling. Journal of Applied Physiology, 117(6), 669–678. https://doi.org/10.1152/japplphysiol.00088.2014

Lim, G., Lee, H., & Lim, Y. (2022). Potential effects of resistance exercise on cognitive and muscle fun-ctions mediated by myokines in sarcopenic obese mice. Biomedicines, 10(10), Article 2529. https://doi.org/10.3390/biomedicines10102529

Lourenço, Í., Krause Neto, W., dos Santos Portella Amorim, L., Moraes Munhoz Ortiz, V., Lopes Geraldo, V., Ferreira, G. H. da S., Caperuto, É. C., & Gama, E. F. (2020). Muscle hypertrophy and ladder based resistance training for rodents: A systematic review and meta analysis. Physiological Re-ports, 8(17), e14502. https://doi.org/10.14814/phy2.14502

Lukaski, H. C., Siders, W. A., & Penland, J. G. (2007). Chromium picolinate supplementation in women: Effects on body weight, composition, and iron status. Nutrition, 23(3), 187–195. https://doi.org/10.1016/j.nut.2006.12.001

Marmett, B., & Nunes, R. B. (2016). Effects of chromium picolinate supplementation on control of me-tabolic variables: A systematic review. Journal of Food and Nutrition Research, 4(10), 633–639.

Mautone Gomes, H., Silveira, A. K., Gasparotto, J., Bortolin, R. C., Terra, S. R., Brum, P. O., Gelain, D. P., & Fonseca Moreira, J. C. (2023). Effects of coconut oil long term supplementation in Wistar rats during metabolic syndrome—Regulation of metabolic conditions involving glucose homeosta-sis, inflammatory signals, and oxidative stress. The Journal of Nutritional Biochemistry, 114, 109272. https://doi.org/10.1016/j.jnutbio.2023.109272

Mazurkiewicz, Ł., Czernikiewicz, K., & Grygiel Górniak, B. (2024). Immunogenetic aspects of sarcope-nic obesity. Genes, 15(2), 202. https://doi.org/10.3390/genes15020206

McPherson, K. C., Shields, C. A., Poudel, B., Fizer, B., Pennington, A., Szabo Johnson, A., Thompson, W. L., Cornelius, D. C., & Williams, J. M. (2019). Impact of obesity as an independent risk factor for the development of renal injury: Implications from rat models of obesity. American Journal of Physiology Renal Physiology, 316(2), F316–F327. https://doi.org/10.1152/ajprenal.00162.2018

Mertz W. Chromium occurrence and function in biological systems. (1969). Physiological Reviews, 49(2), 163-239. doi: 10.1152/physrev.1969.49.2.163.

Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. (2018). Nutrients, 10(10), 1502. doi: 10.3390/nu10101502.

Mityukova, T. A., Basalai, A. A., Chudilovskaya, K. N., Poluliakh, O. E., Shcherbakov, Y. V., & Kastiu-chenka, M. S. (2023). Decrease in Muscle Mass in Diet-Induced Visceral Obesity in Male Wistar Rats: Relationship with Hormonal and Metabolic Parameters. Journal of Evolutionary Bioche-mistry and Physiology, 59(4), 1277-1286.

Nascimento, V., Neto, W. K., Gonçalves, L. S. A., Mafrino, L. B. M., Souza, R. R., & Gama, E. F. (2013). Morphoquantitative analysis revealed Triceps Brachialis muscle hypertrophy by specific resis-tance training equipment in rats. Morphoquantitative Analysis Revealed Triceps Brachialis Muscle Hypertrophy by Specific Resistance Training Equipment in Rats. Journal of Morphologi-cal Sciences 30(4), 276-280.

Neto, W. K., Silva, W. D. A., Ciena, A. P., Anaruma, C. A., & Gama, E. F. (2016). Vertical climbing for ro-dent resistance training: A discussion about training parameters. International Journal of Sports Science, 6(1A), 36–49.

Otis, J. S., Burkholder, T. J., & Pavlath, G. K. (2005). Stretch-induced myoblast proliferation is dependent on the COX 2 pathway. Experimental Cell Research, 310(2), 417–425. https://doi.org/10.1016/j.yexcr.2005.08.009

Orhan C, Kucuk O, Tuzcu M, Sahin N, Komorowski JR, Sahin K. (2018). Effect of supplementing chro-mium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high-fat diet. Food Science & Nutrition, 7(1), 183-194. doi: 10.1002/fsn3.851

Paavonsalo S, Hariharan S, Lackman MH, Karaman S. (2020). Capillary Rarefaction in Obesity and Me-tabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells, 9(12), 2683. doi: 10.3390/cells9122683.

Perilhão, M. S., Krause Neto, W., da Silva, A. A., Alves, L. S., Antonio, E. L., Medeiros, A., Rica, R. L., Se-rra, A. J., Tucci, P. J. F., & Bocalini, D. S. (2020). Linear periodization of strength training in blo-cks attenuates hypertension and diastolic dysfunction with normalization of myocardial colla-gen content in spontaneously hypertensive rats. Journal of Hypertension, 38(1), 73. https://doi.org/10.1097/HJH.0000000000002188

Pfeffer, J. M., Pfeffer, M. A., & Frohlich, E. D. (1971). Validity of an indirect tail cuff method for deter-mining systolic arterial pressure in unanesthetized normotensive and spontaneously hyperten-sive rats. The Journal of Laboratory and Clinical Medicine, 78(6), 957–962. https://doi.org/10.5555/uri:pii:0022214371901326

Pittler, S., Stevinson, C., & Ernst, E. (2003). Chromium picolinate for reducing body weight: Meta-analysis of randomized trials. International Journal of Obesity and Related Metabolic Disorders, 27(4), 522-529. https://doi.org/10.1038/0802262

Santos, J. D. M., Silva, J. F. T., Alves, E. dos S., Cruz, A. G., Santos, A. R. M., Camargo, F. N., Talarico, C. H. Z., Silva, C. A. A., & Camporez, J. P. (2024). Strength training protects high fat fed ovariectomi-zed mice against insulin resistance and hepatic steatosis. International Journal of Molecular Sciences, 25(10), 5066. https://doi.org/10.3390/ijms25105066

Sheptulina, A. F., Antyukh, K. Y., Kiselev, A. R., Mitkovskaya, N. P., & Drapkina, O. M. (2023). Possible mechanisms linking obesity, steroidogenesis, and skeletal muscle dysfunction. Life, 13(6), 1496. https://doi.org/10.3390/life13061415

Speretta, G. F. F., Rosante, M. C., Duarte, F. O., Leite, R. D., Lino, A. D. de S., Andre, R. A., Silvestre, J. G. de O., Araujo, H. S. S. de, & Duarte, A. C. G. de O. (2012). The effects of exercise modalities on adiposity in obese rats. Clinics, 67, 1469–1477. https://doi.org/10.6061/clinics/2012(12)19

Staniek, H., Rhodes, N. R., Di Bona, K. R., Deng, G., Love, S. T., Pledger, L. A., Blount, J., Gomberg, E., Grappe, F., Cernosek, C., Peoples, B., Rasco, J. F., Krejpcio, Z., & Vincent, J. B. (2013). Compari-son of tissue metal concentrations in Zucker lean, Zucker obese, and Zucker diabetic fatty rats and the effects of chromium supplementation on tissue metal concentrations. Biological Trace Element Research, 151(3), 373–383. https://doi.org/10.1007/s12011-012-9565-8.

Tang, L., Gao, X., Yang, X., Liu, C., Wang, X., Han, Y., Zhao, X., Chi, A., & Sun, L. (2016). Ladder climbing training prevents bone loss and microarchitecture deterioration in diet induced obese rats. Calcified Tissue International, 98(1), 85–93. https://doi.org/10.1007/s00223-015-0063-9

Tibana, R. A., Franco, O. L., Cunha, G. V., Sousa, N. M. F., Sousa Neto, I. V., Carvalho, M. M., Almeida, J. A., Durigan, J. L. Q., Marqueti, R. C., Navalta, J. W., Lobo, M. O., Voltarelli, F. A., & Prestes, J. (2017). The effects of resistance training volume on skeletal muscle proteome. International Journal of Exercise Science, 10(7), 1051–1066.

Tian H, Guo X, Wang X, He Z, Sun R, Ge S, & Zhang Z. (2013). Chromium picolinate supplementation for overweight or obese adults. Cochrane Database of Systematic Reviews, 2013(11):CD010063. doi: 10.1002/14651858.CD010063.pub2.

Vincent, J. B. (2000). The biochemistry of chromium. The Journal of Nutrition, 130(4), 715–718. https://doi.org/10.1093/jn/130.4.715

Wang, M. Q., He, Y. D., Lindemann, M. D., & Jiang, Z. G. (2009). Efficacy of Cr (III) supplementation on growth, carcass composition, blood metabolites, and endocrine parameters in finishing pigs. Asian Australasian Journal of Animal Sciences, 22(10), 1414–1419.

Yazaki, Y., Faridi, Z., Ma, Y., Ali, A., Northrup, V., Njike, V. Y., Liberti, L., & Katz, D. L. (2010). A pilot study of chromium picolinate for weight loss. The Journal of Alternative and Complementary Medicine, 16(3), 291–299. https://doi.org/10.1089/acm.2009.0286

Zamboni, M., Mazzali, G., Fantin, F., Rossi, A., & Di Francesco, V. (2008). Sarcopenic obesity: A new category of obesity in the elderly. Nutrition, Metabolism & Cardiovascular Diseases, 18(5), 388–395. https://doi.org/10.1016/j.numecd.2007.10.002

Zoico, E., Di Francesco, V., Mazzali, G., Vettor, R., Fantin, F., Bissoli, L., Guariento, S., Bosello, O., & Zam-boni, M. (2004). Adipocytokines, fat distribution, and insulin resistance in elderly men and women. The Journals of Gerontology, 59(9), M935–M939. https://doi.org/10.1093/gerona/59.9.M935

Descargas

Publicado

2025-07-08

Cómo citar

da Silva, D., Domingos, L., Madureira, A., Torezani-Salles, S., Bocalini, D., Nogueira, B., … Leopoldo, A. (2025). El entrenamiento de fuerza y la suplementación con picolinato de cromo no reducen la adiposidad ni mejoran la morfología muscular en ratas obesas. Retos, 70, 671–687. https://doi.org/10.47197/retos.v70.114584

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas