El aumento de la masa grasa corporal se vincula a un cociente respiratorio alto en personas con mal nutrición por exceso
DOI:
https://doi.org/10.47197/retos.v68.113028Palabras clave:
Cociente respiratorio, flexibilidad metabólica, metabolismo basal, metabolismo energético, obesidadResumen
Introducción: La obesidad es una pandemia global asociada a un mayor riesgo de enfermedades crónicas no transmisibles y aumento de la mortalidad general. Se caracteriza por un exceso de tejido adiposo subcutáneo y visceral. El tejido adiposo visceral desempeña un rol clave en la regulación energética; un desequilibrio en la disponibilidad de sustratos puede reflejar disfunción mitocondrial. En personas con obesidad, se ha observado alteración celular en el tejido adiposo, lo que contribuye a una menor capacidad de oxidación de ácidos grasos, fenómeno conocido como inflexibilidad metabólica.
Objetivo: analizar los perfiles metabólicos en adultos con sobrepeso y obesidad, mediante calorimetría indirecta en reposo y su relación con masa grasa y muscular.
Metodología: Se evaluaron adultos con normopeso, sobrepeso y obesidad en el laboratorio de fisiología del ejercicio de la Universidad Santo Tomás, sede Santiago. Se registraron mediciones antropométricas (4 pliegues cutáneos) y calorimetría indirecta en reposo. El análisis consideró el cociente respiratorio (RQ), el porcentaje de masa grasa y masa muscular.
Resultados: Los participantes con obesidad mostraron un RQ elevado en reposo, en comparación con personas con normopeso. Este hallazgo se relacionó con mayor porcentaje de masa grasa y menor masa muscular relativa.
Conclusiones: Los resultados sugieren que la obesidad se asocia a inflexibilidad metabólica, evidenciada por una menor capacidad para oxidar grasas en reposo. Este fenómeno podría estar vinculado a disfunción mitocondrial, resistencia a la insulina e inflamación crónica.
Citas
Alcantara, J. M. A., Osuna-Prieto, F. J., & Plaza-Florido, A. (2022). Associations between intra-assessment resting metabolic rate variability and health-related factors. Metabolites, 12(12), 1218. https://doi.org/10.3390/metabo12121218
Amaro-Gahete, F. J., Sanchez-Delgado, G., Ara, I., & R Ruiz, J. (2019). Cardiorespiratory fitness may influence metabolic inflexibility during exercise in obese persons. The Journal of Clinical Endocrinology and Metabolism, 104(12), 5780–5790. https://doi.org/10.1210/jc.2019-00685
Battista, F., Belligoli, A., Neunhaeuserer, D., Gasperetti, A., Bettini, S., Compagnin, C., Marchese, R., Quinto, G., Bergamin, M., Vettor, R., Busetto, L., & Ermolao, A. (2021). Metabolic response to submaximal and maximal exercise in people with severe obesity, prediabetes, and diabetes. Obesity Facts, 14(4), 415–424. https://doi.org/10.1159/000517388
Beatty, J., & Melanson, K. (2019). Examining changes in respiratory exchange ratio within an 8-week weight loss intervention. Journal of Human Nutrition and Dietetics : The Official Journal of the British Dietetic Association, 32(6), 737–744. https://doi.org/10.1111/jhn.12692
Brooks, G. A., & Mercier, J. (1994). Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. Journal of Applied Physiology (Bethesda, Md.: 1985), 76(6), 2253–2261. https://doi.org/10.1152/jappl.1994.76.6.2253
Brun, J.-F., Myzia, J., Varlet-Marie, E., Raynaud de Mauverger, E., & Mercier, J. (2022). Beyond the calorie paradigm: Taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients, 14(8), 1605. https://doi.org/10.3390/nu14081605
Chávez-Guevara, I. A., Amaro-Gahete, F. J., Ramos-Jiménez, A., & Brun, J. F. (2023). Toward exercise guidelines for optimizing fat oxidation during exercise in obesity: A systematic review and Meta-regression. Sports Medicine (Auckland, N.Z.), 53(12), 2399–2416. https://doi.org/10.1007/s40279-023-01896-6
Chávez-Guevara, I. A., Hernández-Torres, R. P., Trejo-Trejo, M., González-Rodríguez, E., Moreno-Brito, V., Wall-Medrano, A., Pérez-León, J. A., & Ramos-Jiménez, A. (2021). Exercise fat oxidation is positively associated with body fatness in men with obesity: Defying the metabolic flexibility paradigm. International Journal of Environmental Research and Public Health, 18(13), 6945. https://doi.org/10.3390/ijerph18136945
Chávez-Guevara, I. A., Urquidez-Romero, R., Pérez-León, J. A., González-Rodríguez, E., Moreno-Brito, V., & Ramos-Jiménez, A. (2020). Chronic effect of fatmax training on body weight, fat mass, and cardiorespiratory fitness in obese subjects: A meta-analysis of randomized clinical trials. International Journal of Environmental Research and Public Health, 17(21), 7888. https://doi.org/10.3390/ijerph17217888
Chu, L., Morrison, K. M., Riddell, M. C., Raha, S., & Timmons, B. W. (2021). Metabolic flexibility during exercise in children with obesity and matched controls. Medicine and Science in Sports and Exercise, 53(1), 159–164. https://doi.org/10.1249/MSS.0000000000002503
Darbre, P. D. (2017). Endocrine disruptors and obesity. Current Obesity Reports, 6(1), 18–27. https://doi.org/10.1007/s13679-017-0264-0
de Lange, P., Lombardi, A., Silvestri, E., Cioffi, F., Giacco, A., Iervolino, S., Petito, G., Senese, R., Lanni, A., & Moreno, M. (2023). Physiological approaches targeting cellular and mitochondrial pathways underlying adipose organ senescence. International Journal of Molecular Sciences, 24(14), 11676. https://doi.org/10.3390/ijms241411676
Delsoglio, M., Achamrah, N., Berger, M. M., & Pichard, C. (2019). Indirect Calorimetry in Clinical Practice. Journal of Clinical Medicine, 8(9), 1387. https://doi.org/10.3390/jcm8091387
De Strijcker, D., Lapauw, B., Ouwens, D. M., Van de Velde, D., Hansen, D., Petrovic, M., Cuvelier, C., Tonoli, C., & Calders, P. (2018). High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: a randomized controlled trial. Journal of Musculoskeletal & Neuronal Interactions, 18(2), 215–226.
De Toro-Martín, J., Arsenault, B. J., Després, J.-P., & Vohl, M.-C. (2017). Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients, 9(8), 913. https://doi.org/10.3390/nu9080913
Dettoni, R., Bahamondes, C., Yevenes, C., Cespedes, C., & Espinosa, J. (2023). The effect of obesity on chronic diseases in USA: a flexible copula approach. Scientific Reports, 13(1), 1831. https://doi.org/10.1038/s41598-023-31861-3
Espinoza-Salinas, A., Peiret-Villacura, L., Cigarroa-Cuevas, I., Podestá, I., Acuña-Vera, S., Arenas-Sanchez, G., … Gonáalez-Jurado, J. (2025). Respuesta autonómica e inflamatoria en obesos con resistencia a la insulina después de un entrenamiento de alta intensidad. Retos, 62, 251–258. https://doi.org/10.47197/retos.v62.107958
Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J., & Paquot, N. (2014). Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice, 105(2), 141–150. https://doi.org/10.1016/j.diabres.2014.03.008
Fernández-Verdejo, R., Malo-Vintimilla, L., Gutiérrez-Pino, J., López-Fuenzalida, A., Olmos, P., Irarrazaval, P., & Galgani, J. E. (2021). Similar metabolic health in overweight/obese individuals with contrasting metabolic flexibility to an oral glucose tolerance test. Frontiers in Nutrition, 8, 745907. https://doi.org/10.3389/fnut.2021.745907
Fuglsang-Nielsen, R., Rakvaag, E., Langdahl, B., Knudsen, K. E. B., Hartmann, B., Holst, J. J., Hermansen, K., & Gregersen, S. (2021). Effects of whey protein and dietary fiber intake on insulin sensitivity, body composition, energy expenditure, blood pressure, and appetite in subjects with abdominal obesity. European Journal of Clinical Nutrition, 75(4), 611–619. https://doi.org/10.1038/s41430-020-00763-0
Gilbertson, N. M., Eichner, N. Z. M., Francois, M., Gaitán, J. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2018). Glucose Tolerance is Linked to Postprandial Fuel Use Independent of Exercise Dose. Medicine and Science in Sports and Exercise, 50(10), 2058–2066. https://doi.org/10.1249/MSS.0000000000001657
Goldenshluger, A., Constantini, K., Goldstein, N., Shelef, I., Schwarzfuchs, D., Zelicha, H., Yaskolka Meir, A., Tsaban, G., Chassidim, Y., & Gepner, Y. (2021). Effect of dietary strategies on respiratory quotient and its association with clinical parameters and organ fat loss: A randomized controlled trial. Nutrients, 13(7), 2230. https://doi.org/10.3390/nu13072230
Goodpaster, B. H., & Sparks, L. M. (2017). Metabolic flexibility in health and disease. Cell Metabolism, 25(5), 1027–1036. https://doi.org/10.1016/j.cmet.2017.04.002
Henry, C. J. K. (2005). Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutrition, 8(7a), 1133–1152. https://doi.org/10.1079/PHN2005815
Hsu, K.-J., Liao, C.-D., Tsai, M.-W., & Chen, C.-N. (2019). Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients, 11. https://doi.org/10.3390/nu11092163
Katare, P. B., Dalmao-Fernandez, A., Mengeste, A. M., Hamarsland, H., Ellefsen, S., Bakke, H. G., Kase, E. T., Thoresen, G. H., & Rustan, A. C. (2022). Energy metabolism in skeletal muscle cells from donors with different body mass index. Frontiers in Physiology, 13, 982842. https://doi.org/10.3389/fphys.2022.982842
Kelley, D. E., He, J., Menshikova, E. V., & Ritov, V. B. (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 51(10), 2944–2950. https://doi.org/10.2337/diabetes.51.10.2944
Khanna, D., Khanna, S., Khanna, P., Kahar, P., & Patel, B. M. (2022). Obesity: A chronic low-grade inflammation and its markers. Cureus, 14(2), e22711. https://doi.org/10.7759/cureus.22711
Larabee, C. M., Neely, O. C., & Domingos, A. I. (2020). Obesity: a neuroimmunometabolic perspective. Nature Reviews. Endocrinology, 16(1), 30–43. https://doi.org/10.1038/s41574-019-0317-x
Lee, H. S., & Lee, J. (2021). Effects of exercise interventions on weight, body mass index, lean body mass and accumulated visceral fat in overweight and obese individuals: A systematic review and meta-analysis of randomized controlled trials. International Journal of Environmental Research and Public Health, 18(5), 2635. https://doi.org/10.3390/ijerph18052635
Lim, J., Alam, U., Cuthbertson, D., & Wilding, J. (2021). Design of a randomised controlled trial: does indirect calorimetry energy information influence weight loss in obesity? BMJ Open, 11(3), e044519. https://doi.org/10.1136/bmjopen-2020-044519
Maunder, E., Plews, D. J., & Kilding, A. E. (2018). Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Frontiers in Physiology, 9, 368003. https://doi.org/10.3389/fphys.2018.00368
McDougal, D. H., Marlatt, K. L., Beyl, R. A., Redman, L. M., & Ravussin, E. (2020). A novel approach to assess metabolic flexibility overnight in a whole-body room calorimeter. Obesity (Silver Spring, Md.), 28(11), 2073–2077. https://doi.org/10.1002/oby.22917
Mengeste, A. M., Rustan, A. C., & Lund, J. (2021). Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring, Md.), 29(10), 1582–1595. https://doi.org/10.1002/oby.23259
Nancekievill, D., Colpitts, B. H., Seaman, K., Girard, M., & Sénéchal, M. (2023). The impact of sprint interval training with or without weight loss on substrate oxidation in adults: A secondary analysis of the i-FLEX study. Physiological Reports, 11(9), e15684. https://doi.org/10.14814/phy2.15684
Omidimorad, A., Nazari, M., Bahmanziari, N., Soleymani, M. H., Barakati, S. H., Ardalan, G., Aminaee, T., Taghizadeh, R., Motlagh, M. E., & Heidarzadeh, A. (2023). Priority strategic directions in adolescent health in Iran based on the WHO’s Global Accelerated Action for the Health of Adolescents. International Journal of Adolescent Medicine and Health, 35(4), 313–321. https://doi.org/10.1515/ijamh-2023-0220
Organización Mundial de la Salud. (2024, marzo). Obesidad y sobrepeso. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Palmer, B. F., & Clegg, D. J. (2022). Metabolic flexibility and its impact on health outcomes. Mayo Clinic Proceedings. Mayo Clinic, 97(4), 761–776. https://doi.org/10.1016/j.mayocp.2022.01.009
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews. Endocrinology, 8(8), 457–465. https://doi.org/10.1038/nrendo.2012.93
Prasun, P. (2020). Mitochondrial dysfunction in metabolic syndrome. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(10), 165838. https://doi.org/10.1016/j.bbadis.2020.165838
Rumbo-Rodríguez, L., Sánchez-SanSegundo, M., Ferrer-Cascales, R., García-D’Urso, N., Hurtado-Sánchez, J. A., & Zaragoza-Martí, A. (2021). Comparison of Body Scanner and Manual Anthropometric Measurements of Body Shape: A Systematic Review. International Journal of Environmental Research and Public Health, 18(12). https://doi.org/10.3390/ijerph18126347
Sakers, A., De Siqueira, M. K., Seale, P., & Villanueva, C. J. (2022). Adipose-tissue plasticity in health and disease. Cell, 185(3), 419–446. https://doi.org/10.1016/j.cell.2022.01.028
Sheptulina, A. F., Antyukh, K. Y., Kiselev, A. R., Mitkovskaya, N. P., & Drapkina, O. M. (2023). Possible mechanisms linking obesity, steroidogenesis, and skeletal muscle dysfunction. Life (Basel, Switzerland), 13(6). https://doi.org/10.3390/life13060951
Smith, R. L., Soeters, M. R., Wüst, R. C. I., & Houtkooper, R. H. (2018). Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocrine Reviews, 39(4), 489–517. https://doi.org/10.1210/er.2017-00116
Splinter, Z. T., & Wilson, P. B. (2019). Physiological and perceptual effects of self-selected and classical relaxing music on resting metabolic rate: a crossover trial. The Journal of Sports Medicine and Physical Fitness, 59(7), 1150–1155. https://doi.org/10.23736/S0022-4707.19.09516-1
Tareen, S. H. K., Kutmon, M., de Kok, T. M., Mariman, E. C. M., van Baak, M. A., Evelo, C. T., Adriaens, M. E., & Arts, I. C. W. (2020). Stratifying cellular metabolism during weight loss: an interplay of metabolism, metabolic flexibility and inflammation. Scientific Reports, 10(1), 1651. https://doi.org/10.1038/s41598-020-58634-3
Topete, M. V., Andrade, S., Bernardino, R. L., Guimarães, M., Pereira, A. M., Oliveira, S. B., Costa, M. M., Nora, M., Monteiro, M. P., & Pereira, S. S. (2023). Visceral adipose tissue bioenergetics varies according to individuals’ obesity class. International Journal of Molecular Sciences, 24(2), 1679. https://doi.org/10.3390/ijms24021679
Tumova, J., Andel, M., & Trnka, J. (2016). Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiological Research, 65(2), 193–207. 10.33549/physiolres.932993.
Twinamasiko, B., Lukenge, E., Nabawanga, S., Nansalire, W., Kobusingye, L., Ruzaaza, G., & Bajunirwe, F. (2018). Sedentary lifestyle and hypertension in a periurban area of Mbarara, south western Uganda: A population based cross sectional survey. International Journal of Hypertension, 2018, 1–8. https://doi.org/10.1155/2018/5248905
Wang, P., Loh, K. H., Wu, M., Morgan, D. A., Schneeberger, M., Yu, X., Chi, J., Kosse, C., Kim, D., Rahmouni, K., Cohen, P., & Friedman, J. (2020). A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature, 583(7818), 839–844. https://doi.org/10.1038/s41586-020-1984-6
Wu, H., & Ballantyne, C. M. (2020). Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research, 126(11), 1549–1564. https://doi.org/10.1161/CIRCRESAHA.120.317871
Yin, M., Chen, Z., Nassis, G. P., Liu, H., Li, H., Deng, J., & Li, Y. (2023). Chronic high-intensity interval training and moderate-intensity continuous training are both effective in increasing maximum fat oxidation during exercise in overweight and obese adults: A meta-analysis. Journal of Exercise Science and Fitness, 21(4), 354–365. https://doi.org/10.1016/j.jesf.2023.04.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Soledad Fuentealba Sepulveda, Alexis Espinoza-Salinas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess