O mecanismo do exercício físico aumenta a glutationa peroxidase como antioxidante endógeno: uma revisão sistemática

Autores

DOI:

https://doi.org/10.47197/retos.v63.108856

Palavras-chave:

glutationa peroxidase, antioxidante, exercício físico

Resumo

Objectivo do estudo. Este estudo tem como objetivo analisar o efeito do exercício físico no aumento da glutationa peroxidase como biomarcador de antioxidantes endógenos. Materiais e métodos. Este tipo de pesquisa de revisão sistemática utiliza pesquisas em bases de dados de revistas como a MEDLINE-Pubmed, Web of Science, Scopus e Science Direct. Os critérios de inclusão neste estudo foram artigos publicados nos últimos 5 anos e artigos que tratassem a glutationa peroxidase, o exercício físico e os antioxidantes. Foram identificados 95 artigos nas bases de dados Science Direct, Pubmed e Web of Science. Um total de 10 artigos que cumpriam os critérios de inclusão foram selecionados e analisados ​​para esta revisão sistemática. Para as operações padrão, este estudo seguiu a avaliação Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Resultados. Esta revisão sistemática refere que o exercício físico demonstrou aumentar os níveis de glutationa peroxidase como marcador de antioxidantes endógenos. Conclusões. Está demonstrado que o exercício físico aumenta os níveis de glutationa peroxidase como marcador de antioxidantes endógenos. Este aumento é provocado pelas ERO, que são uma resposta fisiológica ao exercício.

Referências

Alehagen, U., Opstad, T. B., Alexander, J., Larsson, A., & Aaseth, J. (2021). Impact of selenium on biomarkers and clinical aspects related to ageing. A review. Biomolecules, 11(10), 1–14. https://doi.org/10.3390/biom11101478

Bellafiore, M., Bianco, A., Battaglia, G., Naccari, M. S., Caramazza, G., Padulo, J., Chamari, K., Paoli, A., & Palma, A. (2019). Training session intensity affects plasma redox status in amateur rhythmic gymnasts. Journal of Sport and Health Science, 8(6), 561–566. https://doi.org/10.1016/j.jshs.2016.04.008

Bellafiore, M., Pintaudi, A. M., Thomas, E., Tesoriere, L., Bianco, A., Cataldo, A., Cerasola, D., Traina, M., Livrea, M. A., & Palma, A. (2021). Redox and autonomic responses to acute exercise-post recovery following Opuntia ficus-indica juice intake in physically active women. Journal of the International Society of Sports Nutrition, 18(1), 1–10. https://doi.org/10.1186/s12970-021-00444-2

Börzsei, D., Kiss, V., Nagy, A., Hoffmann, A., Török, S., Almási, N., Veszelka, M., Varga, C., & Szabó, R. (2024). Moderate-Intensity Swimming Alleviates Oxidative Injury in Ischemic Heart. Applied Sciences, 14(5), 2073. https://doi.org/10.3390/app14052073

Bunpo, P., Chatarurk, A., Intawong, K., Naosuk, K., & Klangsinsirikul, P. (2021). Effects of ascorbic acid supplementation on immune status in healthy women following a single bout of exercise. Sport Sciences for Health, 17(3), 635–645. https://doi.org/10.1007/s11332-020-00726-3

Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants, 11(2). https://doi.org/10.3390/antiox11020350

Delrieu, L., Touillaud, M., Pérol, O., Morelle, M., Martin, A., Friedenreich, C. M., Mury, P., Dufresne, A., Bachelot, T., Heudel, P. E., Fervers, B., Trédan, O., & Pialoux, V. (2021). Impact of Physical Activity on Oxidative Stress Markers in Patients with Metastatic Breast Cancer. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/6694594

Gomez-cabrera, M. C., Carretero, A., Millan-domingo, F., Garcia-dominguez, E., Correas, A. G., Olaso-gonzalez, G., & Vi, J. (2021). Redox Biology Redox-related biomarkers in physical exercise. 42. https://doi.org/10.1016/j.redox.2021.101956

Handy, D. E., Joseph, J., & Loscalzo, J. (2021). Selenium, a micronutrient that modulates cardiovascular health via redox enzymology. Nutrients, 13(9). https://doi.org/10.3390/nu13093238

Heyne, E., Zeeb, S., Junker, C., Petzinna, A., Schrepper, A., Doenst, T., Koch, L. G., Britton, S. L., & Schwarzer, M. (2024). Exercise Training Differentially Affects Skeletal Muscle Mitochondria in Rats with Inherited High or Low Exercise Capacity. Cells, 13(5). https://doi.org/10.3390/cells13050393

Joanisse, S., McKendry, J., Lim, C., Nunes, E. A., Stokes, T., Mcleod, J. C., & Phillips, S. M. (2021). Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. Clinical Nutrition Open Science, 36, 56–77. https://doi.org/10.1016/j.nutos.2021.01.005

Kazem, E. N., & Abboud, N. M. (2024). The effect of exercises similar to playing according to the aerobic energy system on the enzyme (GPX) and peaceful shooting for female basketball players. Journal of Sports Science and Nutrition, 5(1), 05–07. https://doi.org/10.33545/27077012.2024.v5.i1a.226

Korivi, M., Mohammed, A., Ye, W., & Lebaka, V. R. (2023). Editorial: Nutritional and physical activity strategies to boost immunity, antioxidant status and health, Volume III. Frontiers in Physiology, 14(April), 1–2. https://doi.org/10.3389/fphys.2023.1199066

Kwon, D. A., Bak, S. Bin, Kim, Y. S., Kim, S. K., & Lee, H. S. (2024). Antioxidant and Anti-Fatigue Effects of a Standardized Botanical Extract Fraction (HemoHIM) in Forced-Exercised Aged Mice. Journal of Medicinal Food, 00(0), 1–8. https://doi.org/10.1089/jmf.2023.K.0234

Li, J., Xu, Y., Liu, T., Xu, Y., Zhao, X., & Wei, J. (2023). The Role of Exercise in Maintaining Mitochondrial Proteostasis in Parkinson’s Disease. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097994

Macarro, M. S., Ávila‐gandía, V., Pérez‐piñero, S., Cánovas, F., García‐muñoz, A. M., Abellán‐ruiz, M. S., Victoria‐montesinos, D., Luque‐rubia, A. J., Climent, E., Genovés, S., Ramon, D., Chenoll, E., & López‐román, F. J. (2021). Antioxidant effect of a probiotic product on a model of oxidative stress induced by high‐intensity and duration physical exercise. Antioxidants, 10(2), 1–14. https://doi.org/10.3390/antiox10020323

Magherini, F., Fiaschi, T., Marzocchini, R., Mannelli, M., Gamberi, T., Modesti, P. A., & Modesti, A. (2019). Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radical Research, 53(11–12), 1155–1165. https://doi.org/10.1080/10715762.2019.1697438

Mahindru, A., Patil, P., & Agrawal, V. (2023). Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus, 15(1), 1–7. https://doi.org/10.7759/cureus.33475

Mendes, S., Leal, D. V., Baker, L. A., Ferreira, A., Smith, A. C., & Viana, J. L. (2023). The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076017

Mohammadjafari, H., Arazi, H., Nemati, N., Bagherpoor, T., & Suzuki, K. (2019). Acute effects of resistance exercise and the use of GH or IGF-1 hormones on oxidative stress and antioxidant markers in bodybuilders. Antioxidants, 8(12), 1–8. https://doi.org/10.3390/antiox8120587

Olaso-gonzalez, G., Viña, J., Brioche, T., & Chopard, A. (2020). Redox Biology Redox modulation of muscle mass and function. Redox Biology, 35(March), 101531. https://doi.org/10.1016/j.redox.2020.101531

Pei, J., Pan, X., Wei, G., & Hua, Y. (2023). Research progress of glutathione peroxidase family (GPX) in redoxidation. Frontiers in Pharmacology, 14(March), 1–14. https://doi.org/10.3389/fphar.2023.1147414

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020a). Exercise-induced oxidative stress : Friend or foe ? 9, 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020b). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Powers, S. K., Goldstein, E., Schrager, M., & Ji, L. L. (2023). Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants, 12(1). https://doi.org/10.3390/antiox12010039

Reza salehi, O., ghabezi, S., Khajehlandi, A., & Mohammadi, A. (2020). Interactive effect of aerobic training and estrogen consumption on serum levels of catalase and glutathione peroxidase enzymes in ovariectomized rats. Jorjani Biomedicine Journal, 8(2), 38–47. https://doi.org/10.29252/jorjanibiomedj.8.2.38

Roh, H., Cho, S., & So, W. (2020). A Cross-Sectional Study Evaluating the E ff ects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. 1–11.

Rusip, G., & Suhartini, S. M. (2020). Effects of moderate intensity exercise on glutathione peroxidase activity and vo2 max in elderly women. Open Access Macedonian Journal of Medical Sciences, 8(A), 230–233. https://doi.org/10.3889/oamjms.2020.3837

Rytz, C. L., Pialoux, V., Mura, M., Martin, A., Hogan, D. B., Hill, M. D., & Poulin, X. M. J. (2024). Impact of aerobic exercise , sex , and metabolic syndrome on markers of oxidative stress : results from the Brain in Motion study. 24, 748–756. https://doi.org/10.1152/japplphysiol.00667.2019

Saberi, S., Askaripour, M., & Khaksari, M. (2024). Heliyon Exercise training improves diabetic renal injury by reducing fetuin-A , oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749

Shamsnia, E., Matinhomaee, H., Azarbayjani, M. A., & Peeri, M. (2023). The Effect of Aerobic Exercise on Oxidative Stress in Skeletal Muscle Tissue: A Narrative Review. Gene, Cell and Tissue, 10(4). https://doi.org/10.5812/gct-131964

Souza, J., da Silva, R. A., da Luz Scheffer, D., Penteado, R., Solano, A., Barros, L., Budde, H., Trostchansky, A., & Latini, A. (2022). Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants, 11(5), 1–18. https://doi.org/10.3390/antiox11050826

Vargas-Ortiz, K., Pérez-Vázquez, V., & Macías-Cervantes, M. H. (2019). Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. International Journal of Molecular Sciences, 20(11), 1–11. https://doi.org/10.3390/ijms20112717

Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/3846122

Wibawa, J. C., Arifin, M. Z., & Herawati, L. (2021). Ascorbic Acid Drink after Submaximal Physical Activity can Maintain the Superoxide Dismutase Levels in East Java Student Regiment. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3383–3392. https://doi.org/10.37506/ijfmt.v15i3.15824

Wouda, M. F., Slettahjell, H. B., Lundgaard, E., Bastani, N. E., Raastad, T., Blomhoff, R., & Kostovski, E. (2023). Acute changes in antioxidants and oxidative stress to vigorous arm exercise: an intervention trial in persons with spinal cord injury and healthy controls. Spinal Cord Series and Cases, 9(1). https://doi.org/10.1038/s41394-023-00590-6

Wyckelsma, V. L., Venckunas, T., Brazaitis, M., Gastaldello, S., Snieckus, A., Eimantas, N., Baranauskiene, N., Subocius, A., Skurvydas, A., Pääsuke, M., Gapeyeva, H., Kaasik, P., Pääsuke, R., Kamandulis, S., & Westerblad, H. (2020). Vitamin C and E Treatment Blunts Sprint Interval Training – Induced Changes in Inflammatory Signaling in Recreationally Active Elderly Humans. 1–20.

Xia, Q., Li, P., Casas-martinez, J. C., & Miranda-vizuete, A. (2024). Peroxiredoxin 2 Regulates DAF-16 / FOXO Mediated Mitochondrial.

Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., & Zheng, G. (2021). The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 12(October), 1–11. https://doi.org/10.3389/fphys.2021.701151

Yol, Y., Turgay, F., Yigittürk, O., Aşıkovalı, S., & Durmaz, B. (2020). BBA - Molecular Basis of Disease The effects of regular aerobic exercise training on blood nitric oxide levels and oxidized LDL and the role of eNOS intron 4a / b polymorphism. BBA - Molecular Basis of Disease, 1866(12), 165913. https://doi.org/10.1016/j.bbadis.2020.165913

Zhao, L., Zong, W., Zhang, H., & Liu, R. (2019). Kidney Toxicity and Response of Selenium Containing Protein-glutathione Peroxidase (Gpx3) to CdTe QDs on Different Levels. Toxicological Sciences, 168(1), 201–208. https://doi.org/10.1093/toxsci/kfy297

Zhou, Z., Chen, C., Teo, E., Zhang, Y., Huang, J., Xu, Y., & Gu, Y. (2022). Intracellular Oxidative Stress Induced by Physical Exercise in Adults : Systematic Review and Meta-Analysis.

Downloads

Publicado

01-02-2025

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Como Citar

Wibawa, J. C., Febrianto, N., Fudin, M. S., Ockta, Y., & Festiawan, R. (2025). O mecanismo do exercício físico aumenta a glutationa peroxidase como antioxidante endógeno: uma revisão sistemática. Retos, 63, 610-619. https://doi.org/10.47197/retos.v63.108856